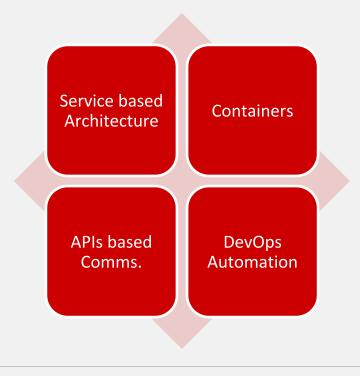


THE KUBERNETES PLATFORM FOR BIG IDEAS

Ortwin Schneider Middleware Solution Architect Nov 2019

... so you want to do containers and Kubernetes?

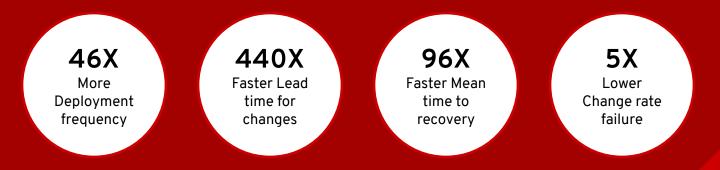
"THE ONLY SUSTAINABLE ADVANTAGE YOU CAN HAVE OVER OTHERS IS AGILITY, THAT'S IT. BECAUSE NOTHING ELSE IS SUSTAINABLE." -Jeff Bezos, Founder Amazon



SOFTWARE DEVELOPMENT IS CHANGING

CLOUD NATIVE APPLICATION DEVELOPMENT Red Hat Perspective

Cloud-native is an approach to building and running applications.


- Service based as in modular, loose coupling e.g Microservices
- Containers as in portable deployment and execution unit
- DevOps Automation as in using collaborative processes and automation from dev to deploy e.g CI/CD, Autoscale
- APIs based communication e.g no shared models, no direct linking

It is not about infrastructure like public, private or hybrid cloud

CLOUD NATIVE DEVELOPMENT IS ABOUT RESPONDING TO CHANGE WITH

SPEED, RESILIENCY AND AGILITY

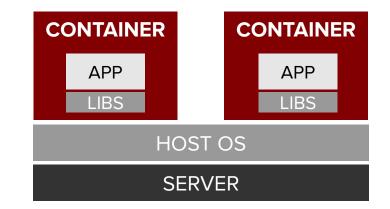
WHAT ARE CONTAINERS?

It Depends Who You Ask

APPLICATIONS

- Application processes on a shared kernel
- Simpler, lighter, and denser than VMs
- Portable across different environments

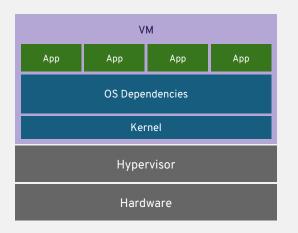
- Package apps with all dependencies
- Deploy to any environment in seconds
- Easily accessed and shared

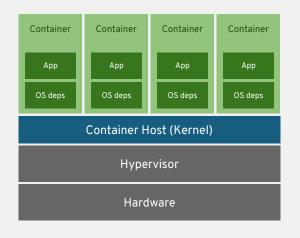

Containers package applications with dependencies and isolate the runtime

- Easy to deploy and portable across host systems
- Created from immutable, layered images
- Isolated from a host operating system.

In RHEL, this is done through:

- Control Groups (cgroups)
- kernel namespaces
- SELinux, sVirt, iptables

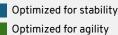



VIRTUAL MACHINES AND CONTAINERS

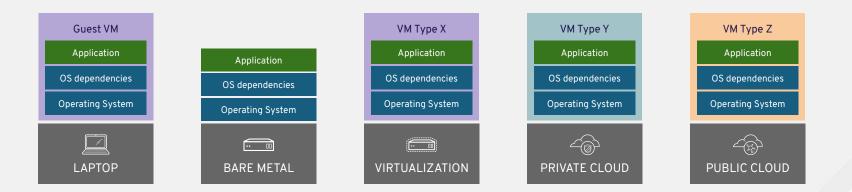
VIRTUAL MACHINES

VM isolates the hardware

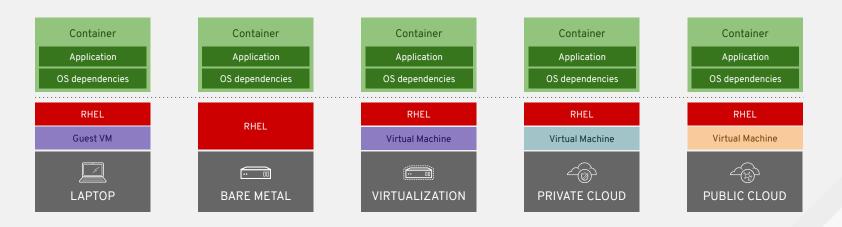
CONTAINERS

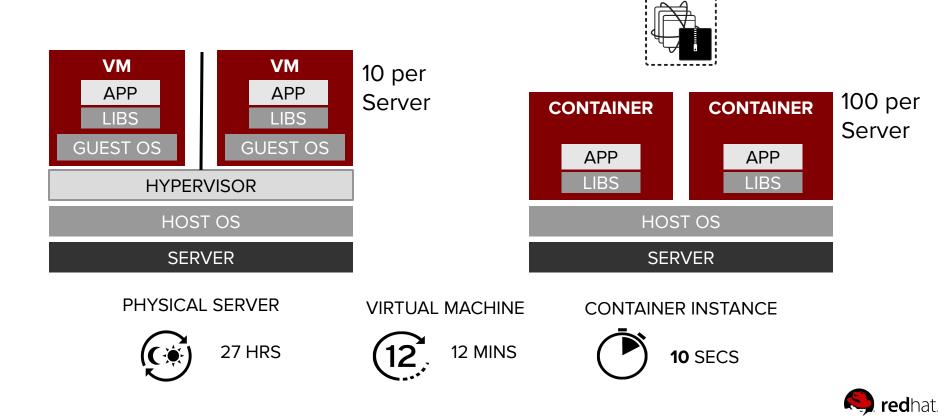

Container isolates the process

VIRTUAL MACHINES AND CONTAINERS

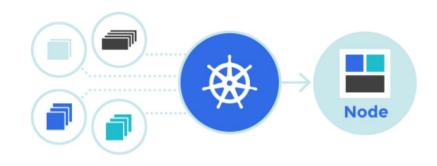


APPLICATION PORTABILITY WITH VM


Virtual machines are NOT portable across hypervisor and do NOT provide portable packaging for applications


APPLICATION PORTABILITY WITH CONTAINERS

RHEL Containers + RHEL Host = Guaranteed Portability Across Any Infrastructure


Containers provide high density and efficiency at the expense of isolation

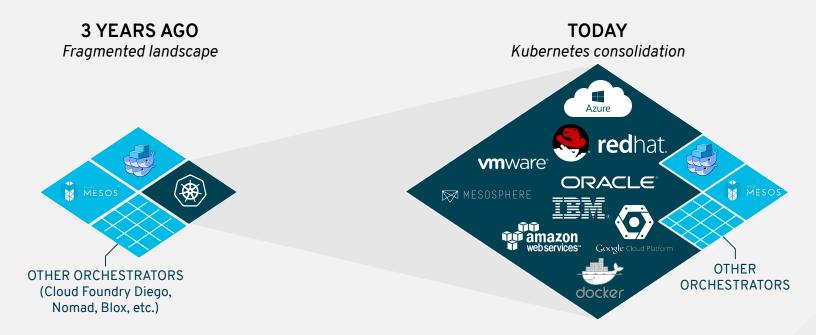
WHAT IS KUBERNETES?

- Orchestration of large amounts of running containers spread across a lot of hosts.
- "Kubernetes is an open-source platform for automating deployment, scaling, and operations of application containers across clusters of hosts, providing container-centric infrastructure." [1]
- Open Sourced by google
- Kubernetes is a project not a product

WHY DO CONTAINERS NEED KUBERNETES?

MANAGE CONTAINERS SECURELY

MANAGE CONTAINERS AT SCALE


INTEGRATE IT OPERATIONS

ENABLE HYBRID CLOUD

CONTAINERIZED APPLICATIONS

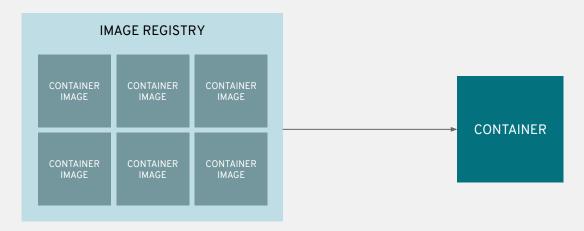
KUBERNETES IS THE CONTAINER ORCHESTRATION STANDARD

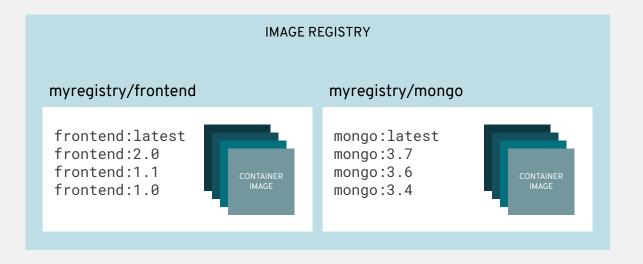
Red Hat bet early on Kubernetes. It has now become the dominant orchestration ecosystem

GENERAL DISTRIBUTION

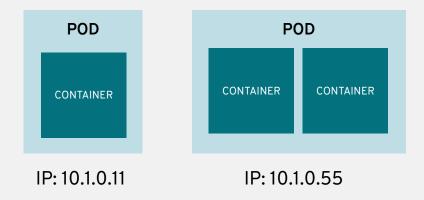
OPENSHIFT CONCEPTS OVERVIEW

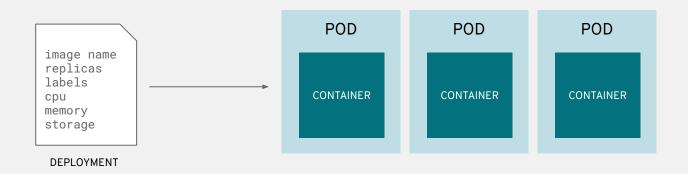
A container is the smallest compute unit

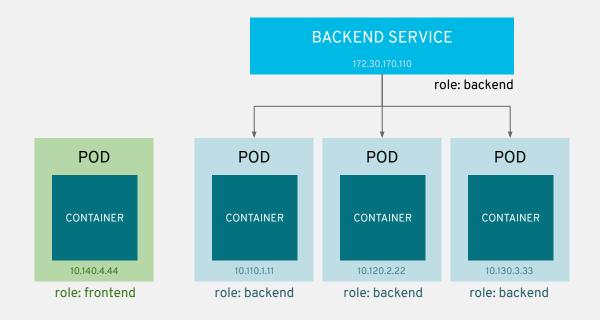

containers are created from container images



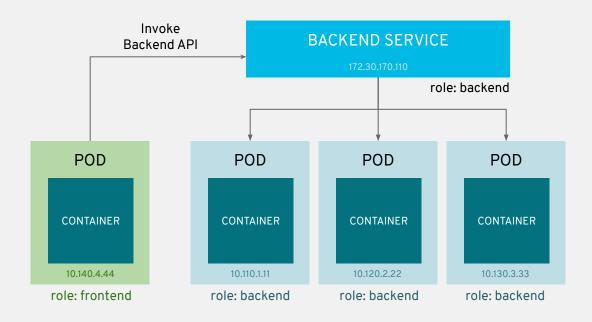
container images are stored in an image registry

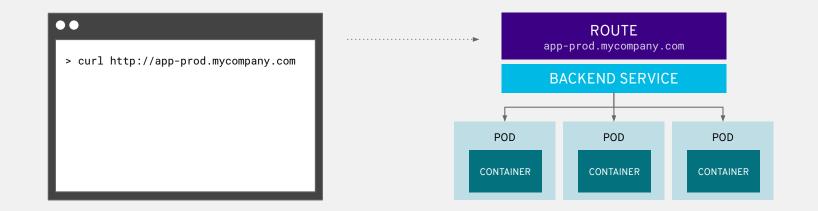

an image repository contains all versions of an image in the image registry


containers are wrapped in pods which are units of deployment and management

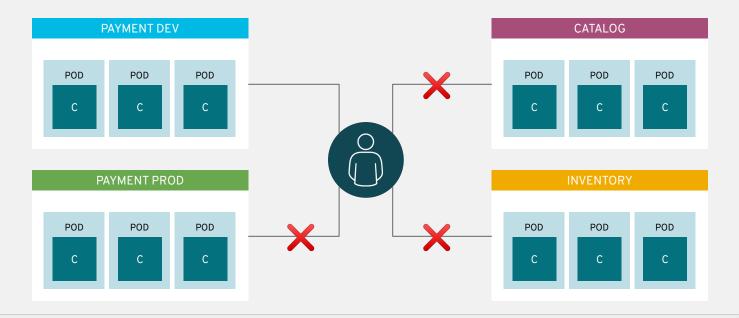


pods configuration is defined in a deployment


services provide internal load-balancing and service discovery across pods



apps can talk to each other via services



routes add services to the external load-balancer and provide readable urls for the app

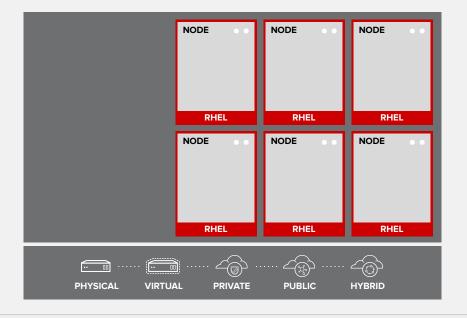
projects isolate apps across environments, teams, groups and departments

OPENSHIFT ARCHITECTURE

YOUR CHOICE OF INFRASTRUCTURE

Supported Infrastructures

OpenShift supported on RHEL and RHCOS


OpenShift 4.1 supported on AWS, VMware, and bare metal

- Future releases to support more infrastructures
- OpenShift 3.11 supported anywhere RHEL runs:
- On bare-metal physical machines or virtualized infrastructure, and in private or certified public clouds
 - Includes all supported virtualization platforms: Red Hat Virtualization, vSphere, Hyper-V
- On Red Hat OpenStack[®] Platform and certified public cloud providers like Amazon, Google, Azure
- x86 and IBM Power server architectures supported

Multi-cluster hybrid approach supports deploying OpenShift clusters on all of these infrastructures and federating them

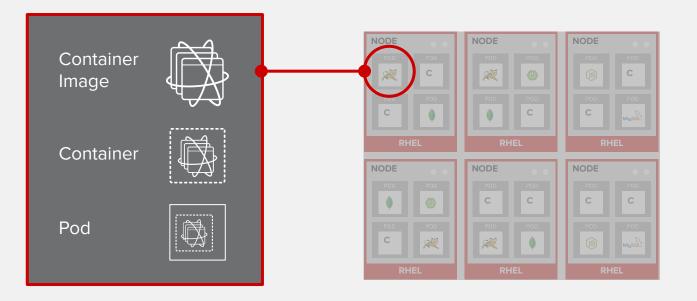
NODES RHEL INSTANCES WHERE APPS RUN

Node Host

OpenShift runs on RHEL and RHCOS OpenShift has two types of nodes:

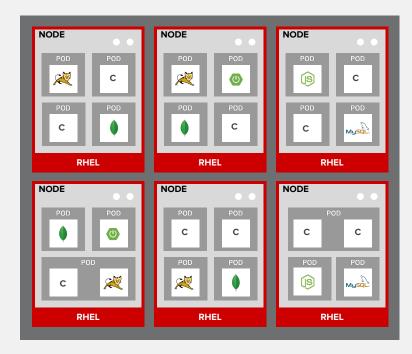
- Workers
- Masters

Nodes are:


- Instances of RHEL or RHCOS with OpenShift installed
- Where end-user applications run
- Orchestrated by master nodes

node daemon and other software run on all nodes

APPS RUN IN CONTAINERS



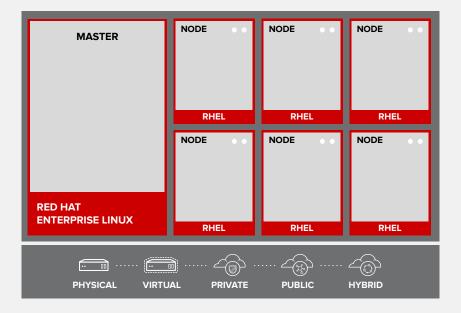
Container

- Application instances and components run in OCI-compliant containers
- OpenShift worker node can run many containers
- Node capacity is related to memory and CPU capabilities of underlying resources
- Hardware or virtualized

PODS ARE THE UNIT OF ORCHESTRATION

Pods

Orchestrated unit in OpenShift


OpenShift schedules and runs all containers in pod on same node
 Complex applications made up of many pods, each with own containers

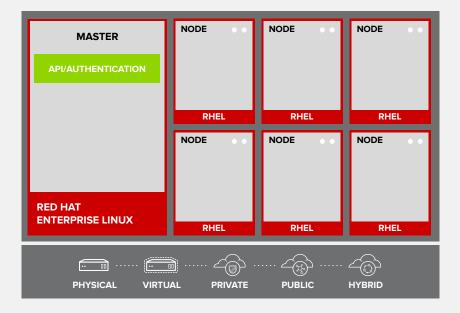
- Interact externally and also with one another inside OpenShift environment
 OpenShift runs container images in containers wrapped by meta object called "pod"
 Possible to have multiple containers in single pod
- Example: To support cluster features as sidecar containers
 Most applications benefit from flexibility of single-container pod
- Different components such as application server and database generally not placed in single pod
- Allows for individual application components to be easily scaled horizontally Application components are wired together by services

MASTERS ARE THE CONTROL PLANE

Master Nodes

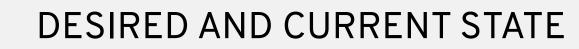
Instances of RHCOS

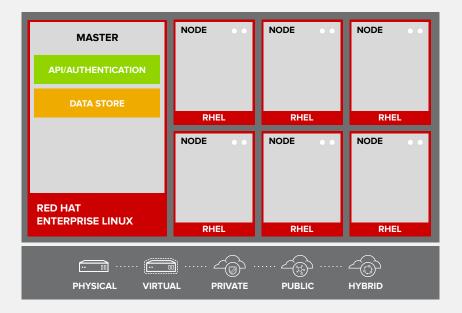
Primary functions:


- Orchestrate all activities on worker nodes
- Know and maintain state within OpenShift environment

Use multiple masters for high availability

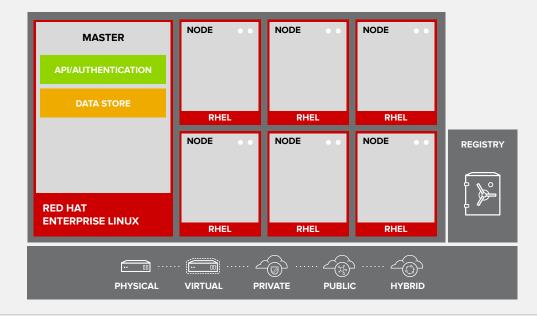
API AND AUTHENTICATION


Master API


Masters provide single API that all tooling and systems interact with

All administration requests goes through this API
 All API requests SSL-encrypted and authenticated
 Authorizations handled via fine-grained role-based access control (RBAC)
 Masters can be tied into external identity management systems

 Examples: LDAP, Active Directory, OAuth providers like GitHub and Google

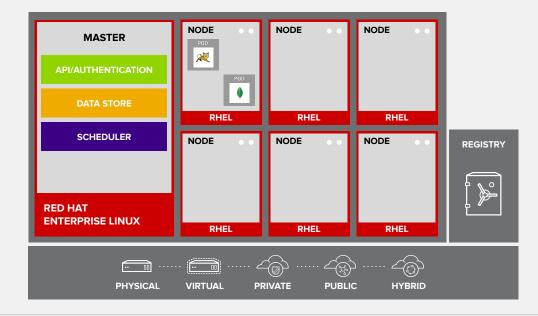

etcd

- Desired and current state held in data store that uses etcd as distributed key-value store
- etcd also holds RBAC rules, application environment information, non-application user data

INTEGRATED CONTAINER REGISTRY

Container Registry

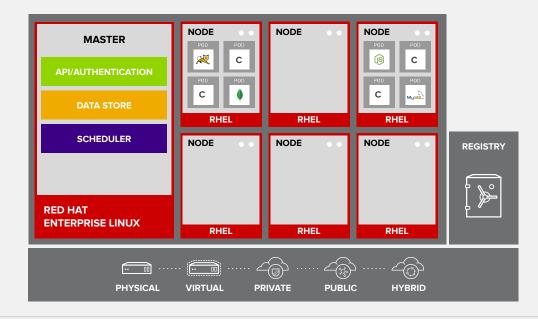
OpenShift Container Platform includes integrated container registry to store and manage container images


When new image pushed to registry, registry notifies OpenShift and passes along image information including:

- Namespace
- Name
- Image metadata

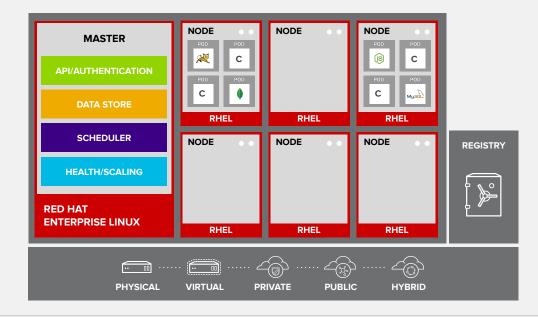
Various OpenShift components react to new image by creating new builds and deployments

ORCHESTRATION AND SCHEDULING



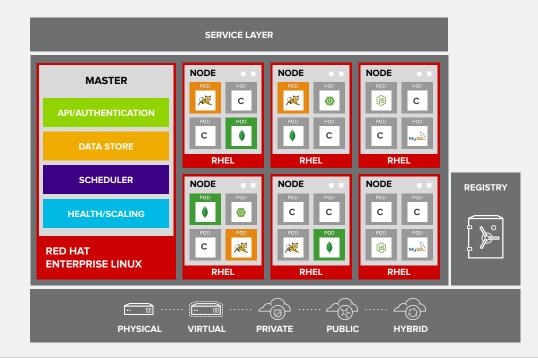
Scheduler

- Component responsible for determining pod placement
- Accounts for current memory, CPU, and other environment utilization when placing pods on worker nodes
- For application high availability, spreads pod replicas between worker nodes



PLACEMENT BY POLICY

AUTOSCALING PODS


Health and Scalinng

Masters monitor health of pods and automatically scale them

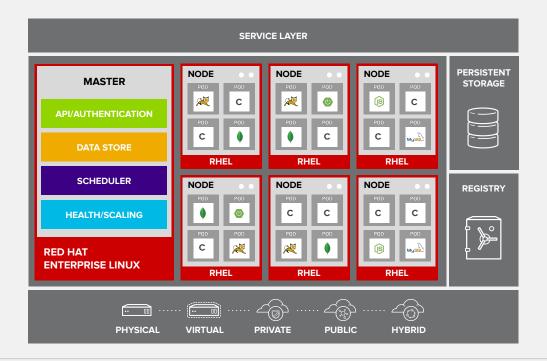
- User configures pod probes for liveness and readiness
- Pods automatically scaled based on CPU utilization metrics

SERVICE DISCOVERY

Services

Defines logical set of pods and access policy

- Provides permanent internal IP address and host name for other applications to use as pods are created and destroyed
- Service layer connects application components together
- Example: Front-end web service connects to database instance by communicating with its service


Services allow simple internal load balancing across application components

 OpenShift automatically injects service information into running containers for ease of discovery

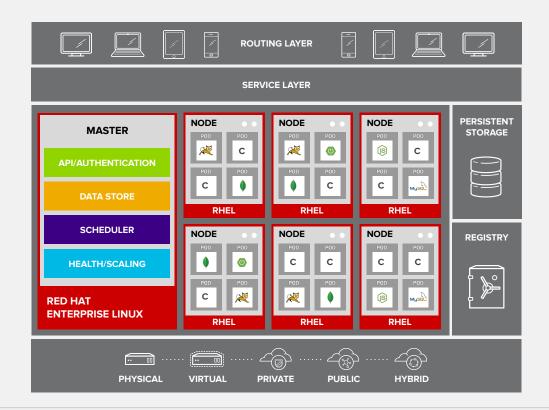
PERSISTENT DATA IN CONTAINERS

Persistent Data

Containers natively ephemeral

Data not saved when containers restarted or created

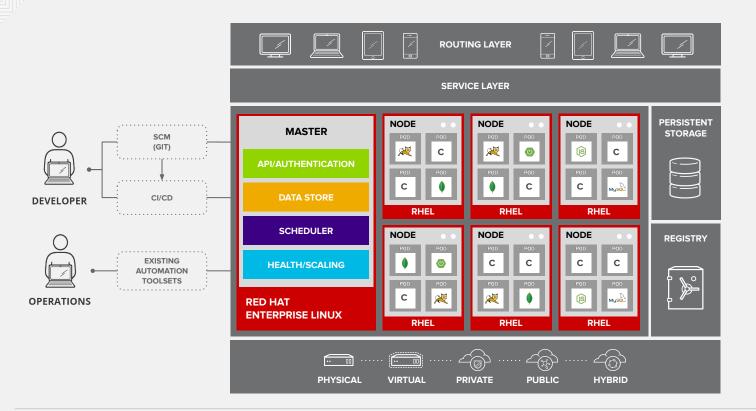
OpenShift provides persistent storage subsystem that automatically connects real-world storage to correct pods


Allows use of stateful applications

OpenShift Container Platform provides wide array of persistent storage types including:

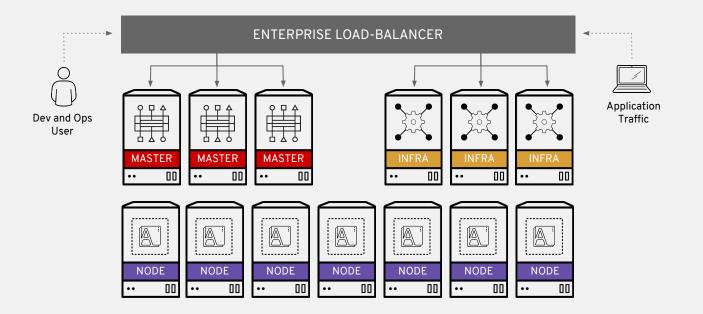
- Raw devices: iSCSI, Fibre Channel
- Enterprise storage: NFS
- Cloud-type options: Gluster[®]/Ceph[®], AWS EBS, pDisk

ROUTING AND LOAD-BALANCING


Routing Layer

Provides external clients access to applications running inside OpenShift Close partner to service layer Runs in pods inside OpenShift Provides:

- Automated load balancing to pods for external clients
- Load balancing and auto-routing around unhealthy pods
 Routing layer pluggable and extensible
- Options include hardware or non-OpenShift software routers



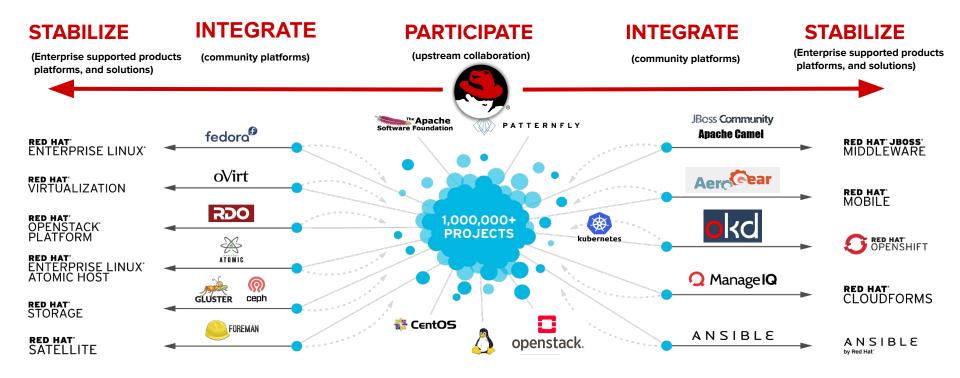
ACCESS VIA WEB, CLI, IDE AND API

FULL HIGH-AVAILABILITY ARCHITECTURE

made easy

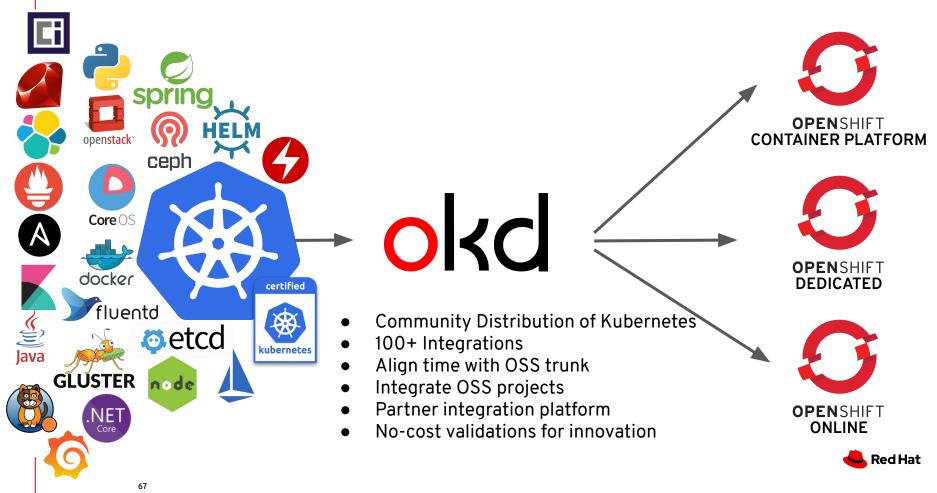
made easy

made easy

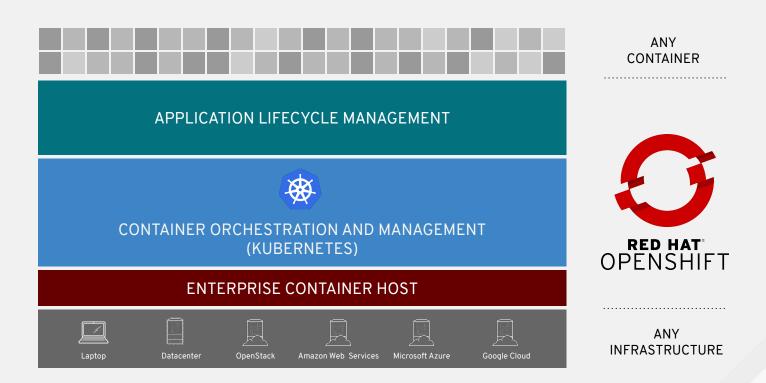


- Docker, Red Hat et al. June 2015
- Two specifications
 - Image format
 - How to package an OCI Image with sufficient information to launch the application on the target platform
 - Runtime
 - How to launch a "filesystem bundle" that is unpacked on disk
- Version 1.0 of each released July 19th 2017
- Distribution spec started in April, 2018.

Red Hat Development Model


CONFIDENTIAL Customer facing

From Community to Enterprise: Upstream First



How Do We Deliver OpenShift?

OPENSHIFT CONTAINER PLATFORM

OPENSHIFT INCLUDES INFRASTRUCTURE AND OPERATIONS

- 1. Containers and Kubernetes provide multi-cloud portability.
- 2. Integrated SDN and Storage
- 3. Fully-automated Day-2 operations.
- 4. Integrated container registry or Red Hat Quay.
- 5. Integrated Service Mesh (Istio).
- 6. Integrated Logging, Monitoring, Metrics.
- 7. Integrated security throughout the stack.

CLUSTER SERVICES

Metrics, Chargeback, Registry, Logging

OPENSHIFT SERVICE MESH

AUTOMATED OPERATIONS

ENTERPRISE KUBERNETES

Red Hat Enterprise Linux or RHEL CoreOS

App/dev services

CONFIDENTIAL Customer facing

- Support for a broad set of applications on OpenShift.
- 2. Integrated Service Catalog and Marketplace
- 3. Integrated CI/CD pipelines.
- 4. Integrated Red Hat or IBM Middleware.
- 5. Integrated Service Mesh (Istio).
- 6. Integrated Serverless (Knative).
- 7. Integrated web-based IDE (Che).
- 8. Operators, Operator Lifecycle Mgmt, OpenShift Marketplace.

APPLICATION SERVICES Middleware, Service Mesh, Serverless and Functions, ISV

DEVELOPER SERVICES Dev Tools, Automated Builds, CI/CD, IDE

AUTOMATED OPERATIONS

ENTERPRISE KUBERNETES

Red Hat Enterprise Linux or RHEL CoreOS

OPENSHIFT MAKES DOCKER UND KUBERNETES EASY TO USE

WHAT COMES IN KUBERNETES

- Container Scheduling on Multiple Hosts
- Self-healing
- Role Based Access Control

WHAT OPENSHIFT ADDS OVER KUBERNETES

Ops:

- Software Defined Network
- Persistent Storage
- Container Native Storage (CNS / SDS)
- Log Aggregation and Analysis
- Monitoring Telemetry
- Capacity Management
- Egress Routing for Enterprise integration
- Router Sharding
- Full Stack Support
- System Certifications and Patching
- •

Security:

- Container Security and Isolation (SELinux, etc)
- Multi-tenancy

- Scaling
- Service Discovery
- Rolling Deploys and Rollbacks

Dev:

- Automatically Triggered Deployments (CICD)
- Integrated Customizable Pipelines (CICD)
- Build and Deployment Configurations
- Weighted AB Testing
- Stateful Workloads (Storage, StatefulSets)
- Workload Containerization
- Self-service
- User Experience
- ...

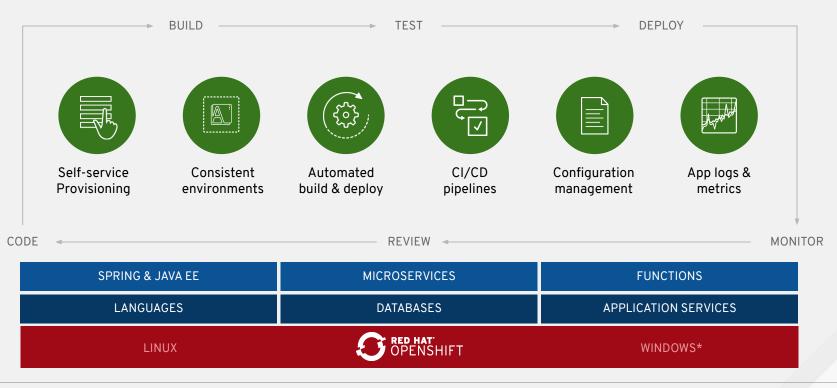
- Secured Registries
- Automated Deployment Patching
- ...

THE POWER OF THE OPENSHIFT ECOSYSTEM

RED HAT ENTERPRISE LINUX ECOSYSTEM

Hardware, Virtualization, Cloud and Service Provider Certifications

Developers want to be productive and have choice


Choice of architectures Choice of programming languages Choice of databases Choice of application services Choice of development tools Choice of build and deploy workflows

They don't want to have to worry about the infrastructure.

HOW OPENSHIFT ENABLES DEVELOPER PRODUCTIVITY

IT Operations needs secure, efficient and controlled processes

Automated* provisioning Automated installations Automated security scanning Automated upgrades Automated backups

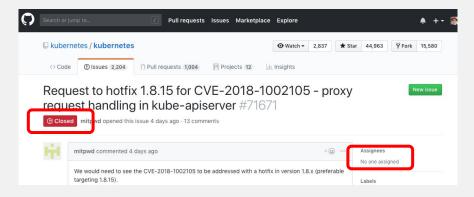
And it needs to integrate with what you already have.

*coming soon

AUTOMATED CONTAINER OPERATIONS

Fully automated day-1 and day-2 operations

INSTALL	DEPLOY	HARDEN	OPERATE				
AUTOMATED OPERATIONS							
Infra provisioning	Full-stack deployment	Secure defaults	Multi-cluster aware				
Embedded OS	On-premises and cloud	Network isolation	Monitoring and alerts				
	Unified experience	Audit and logs	Full-stack patch & upgrade				
		Signing and policies	Zero downtime upgrades				
			Vulnerability scanning				



Community vs. Enterprise - Security Example

Dec 2018 - Critical (9.8 of 10) Kubernetes Security Vulnerability CVE-2018-1002105,

Kubernetes Community:

- Fixed **3** releases (1.10, 1.11, 1.12)
- "All prior versions remain exposed and users should stop using them immediately"
- <u>Requests to fix older versions</u> are denied:

Enterprise OpenShift from Red Hat:

Updates for Affected Products

- Fixed **10** releases <u>back to OpenShift V3.2</u> (which corresponds to kubernetes 1.2):

Product	Package	Advisory/Update
OpenShift Container Platform v3.11	kubernetes	RHSA-2018:3537
OpenShift Container Platform v3.10	kubernetes	RHSA-2018:3549
OpenShift Container Platform v3.9	kubernetes	RHSA-2018:2908
OpenShift Container Platform v3.8	kubernetes	RHSA-2018:3551
OpenShift Container Platform v3.7	kubernetes	RHSA-2018:2906
OpenShift Container Platform v3.6	kubernetes	RHSA-2018:3598
OpenShift Container Platform v3.5	kubernetes	RHSA-2018:3624
OpenShift Container Platform v3.4	kubernetes	RHSA-2018:3752
OpenShift Container Platform v3.3	kubernetes	RHSA-2018:3754
OpenShift Container Platform v3.2	kubernetes	RHSA-2018:3742

	Sed Hat OpenShift 4	🛞 kubernetes
Container orchestration	✓ Kubernetes	✓ Kubernetes
Container image	✓ OCI-compliant/docker	✓ BYO OCI-compliant
Container runtime	✓ CRIO/docker	✓ BYO OCI-compliant engine
Container build	✓ RHCC/S2I/dockerfile	×
Container registry	✓ Quay/OSS docker registry	×
Container scanner	✓ OSCAP/Clair	×
CI/CD automation	✓ Jenkins 2	×
IDE	✓ Che	×
Web UX	✓ Web console	✓ Web console
CLIUX	✓ oc/odo/kubectl	🗸 kubectl
Service catalog	✓ Operators/OSB-API	×
Secrets management	✓ Kubernetes Secrets	✓ Kubernetes Secrets
Supported/preferred runtime	✓ RHOAR (EAP, Spring, vert.x, node.js)	×

	S Red Hat OpenShift 4	🛞 kubernetes
Service mesh	🗸 Istio, Jaeger, Kiali, Profana	X
Logging	✓ EFK	X
Metrics	✓ Prometheus/Grafana	X
Storage	✓ OpenShift Container Storage	X
Network	✓ OVN	X
Ingress	✓ Kubernetes Ingress/Routes	✓ Kubernetes Ingress
Ingress controller	✓ HA Proxy	X
Egress	✓ Egress Router	×
Authentication	✓ Kubernetes Auth/RH-IdM	🗸 Kubernetes Auth
App isolation	✓ Kubernetes scheduler	✓ Kubernetes Scheduler
Infrastructure	✓ Bare metal, vSphere, KVM, OpenStack, AWS, GCP, Azure	🗸 BYO Linux
Infra automation	✓ Ansible/Terraform/Operators	×
Infra management	✓ Admin Console	×
Operating system	✓ RHEL or RHEL CoreOS	×
CNCF Certified Kubernetes	\checkmark	X

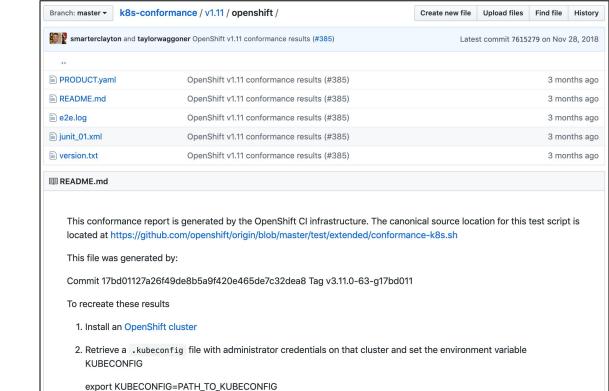
		OpenShift 4 Container Platform	OKC Project	kubernetes Orchestration Engine
	Long-term maintenance and support with backwards compatibility of bug fixes and security patches	•	0	\bigcirc
	Security and feature backport		\bigcirc	\bigcirc
	Long-term support and release lifecycle management	•	0	\bigcirc
Stability	Config and settings tested for scale and enterprise use	•	\bigcirc	\bigcirc
	No need to understand, check, and maintain dependencies on arbitrary third-party project binaries	•	0	0
	Automated software updates, alerting, and management	•	\bigcirc	\bigcirc
Patches/	Patches provided and maintained by Red Hat	•	\bigcirc	\bigcirc
updates	Certified hotfixes/patches and security updates	•	\bigcirc	\bigcirc
Certifications	Common Criteria certifications	RHEL and RHEL Core OS	0	0

		OpenShift 4	okd	🛞 kubernetes
		Container Platform	Project	Orchestration Engine
	Formalized enterprise security resolution process		0	0
	Security response team identifies, tracks and resolves issues	•	\bigcirc	0
Security	Containers wrapped in SELinux custom contexts via MCS	•	0	0
	Full SELinux container security Much stronger than the basic namespace protection	•	0	0
	Single Sign-On support (OAuth, SAML)		0	0
	SLA, defect escalation, end-of-life policy management		\bigcirc	0
	Support portal		\bigcirc	0
Support	Production support	•	\bigcirc	0
Support	Product developers provide support	•	\bigcirc	0
	Ability to file request for enhancements	•	0	0
	Access to project leads (Clayton Coleman, Jeremy Eder, etc)		\bigcirc	0

		Sed Hat OpenShift 4 Container Platform	OKC Project	kubernetes Orchestration Engine
Consulting,	Expert consulting from Red Hat and certified partners		\bigcirc	\bigcirc
TAM and training	Training content driven directly by those who wrote the code	•	\bigcirc	\bigcirc
certification	Training certification	•	\bigcirc	\bigcirc
Quality	Scalability tested/hardened	•	\bigcirc	\bigcirc
assurance	Certification for multiple cloud providers AWS, Google GCP, Microsoft Azure	•	\bigcirc	\bigcirc
	Third party ISV support: ex: applications running in containers and integrations	•	\bigcirc	\bigcirc
	Full stack integrations tested with Red Hat Cloud Suite*	•	\bigcirc	\bigcirc
Ecosystem	Full scalable SDN support via Open vSwitch (VXLAN managed by NetFlow rules)	•	0	0
	Dynamic storage provisioning for Persistent Volumes via EBS, Cinder, and GCE		•	0

		OpenShift 4 Container Platform	OKC Project	kubernetes Orchestration Engine
	Container development kit for developers	•	•	\bigcirc
	Atomic Registry with tested, secured, and supported images, e.g. EAP, BRMS, BPMS, Python, etc.	•	\bigcirc	0
	Multi-tenant experience	•	•	0
	Graphical experience	•	•	\bigcirc
Developer productivity	Innovation Labs quick start/support	•	\bigcirc	\bigcirc
p. c a a c ,	Influence product roadmap (RFE submissions)	•	\bigcirc	\bigcirc
	Access to project leads	•	\bigcirc	\bigcirc
	CI/CD integration - support for Jenkins, Git and most other industry standards	•	0	0
	Production-grade container image registry (Quay)*	•	•	0

*OpenShift's container image registry is much more feature-rich and capable than the base registry provided as part of Docker containers


		C Red Hat OpenShift 4 Container Platform	OKC Project	kubernetes Orchestration Engine
	EFK (Elasticsearch, FluentD, Kibana - similar to ELK stack) for centralized stateless remote logging. Logging indexes manage themselves as you spin up new apps	•	•	•
Consulting, TAM and training	Hawkular/Heapster/Cassandra for performance metrics stack	•	•	0
	Role-based access control (RBAC)	•	•	0
	Load balancers - examples: support by F5, Avinetworks, Amazon ELB, and other major load balancer providers	•	•	0
Ecosystem	Development tools - certification to run plugins from app dev tool providers, example: Appdynamics	•	•	0
	Certification for multiple cloud providers, examples: Amazon AWS, Google GCE, Microsoft Azure	•	\bigcirc	0

CONFIDENTIAL Customer facing

KUBERNETES CONFORMANCE

Interoperability at the API

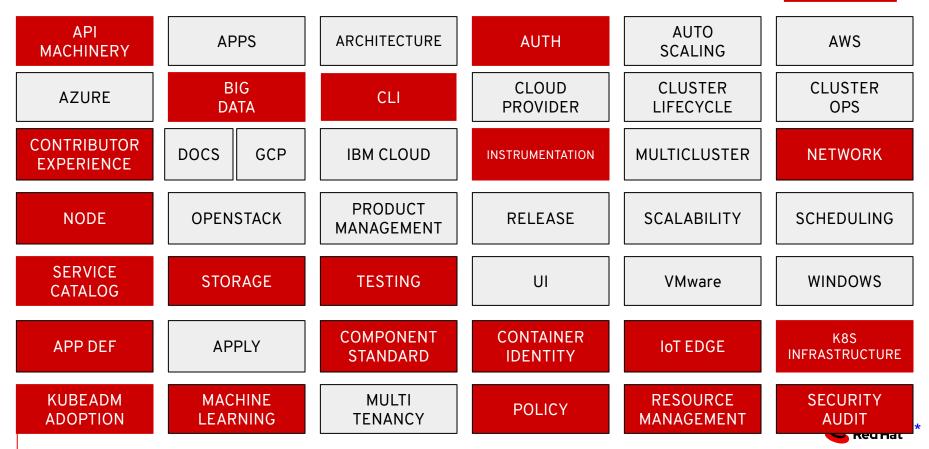
85

OPENSHIFT IS KUBERNETES FOR THE ENTERPRISE

Security fixes 100s of defect and performance fixes 200+ validated integrations Middleware integrations (container images, storage, networking, cloud services, etc) 9 year enterprise lifecycle management Certified Kubernetes

88

Red Hat has a strong history with Kubernetes

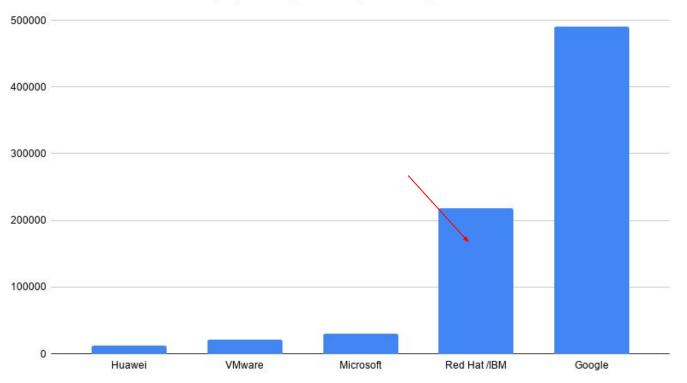


📥 Red Hat

KUBERNETES SIGs & WGs- ENGINEERING LEADERSHIP

RED HAT LEAD or CO-LEAD

21 of 43 GROUPS

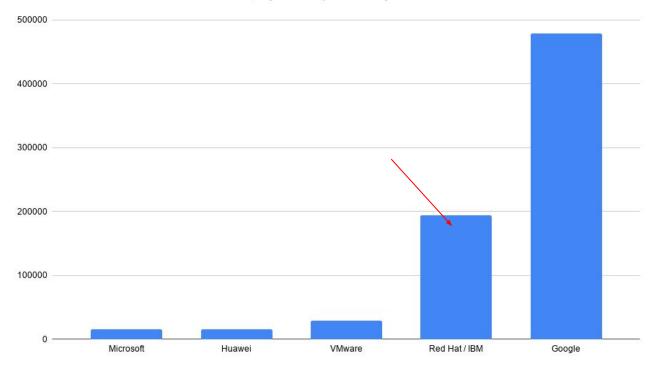


https://github.com/kubernetes/community/blob/master/sig-list.md

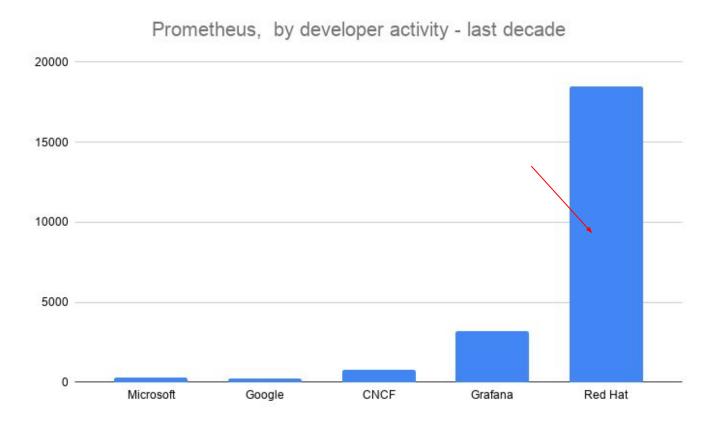
Cloud Native Computing Foundation

CONFIDENTIAL Customer facing

All CNCF projects, by developer activity - last decade

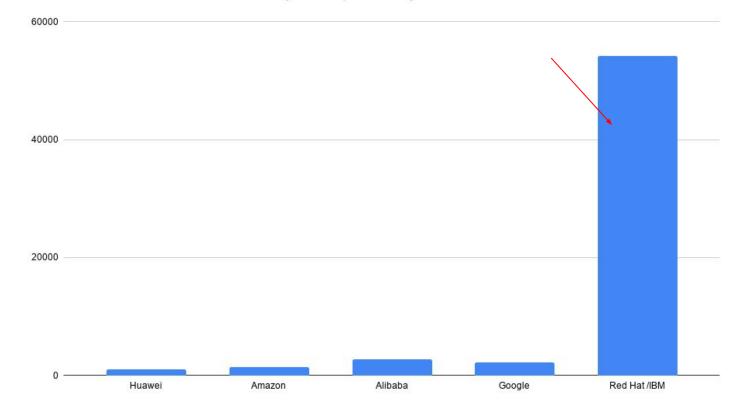


Kubernetes activity by developer, last decade


CONFIDENTIAL Customer facing

Kubernetes, by developer activity - last decade

Prometheus monitoring

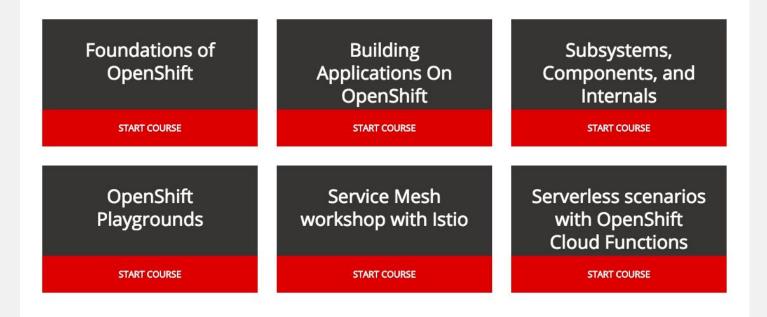

CONFIDENTIAL Customer facing

ETC-D database

CONFIDENTIAL Customer facing

ETC by developer activity - last decade

Source: <u>CNCF (</u>Oct, 2019)



Great! I am hooked! How do I proceed?

TIN

TE STER

LEARN.OPENSHIFT.COM

Interactive Learning Scenarios provide you with a pre-configured OpenShift instance, accessible from your browser without any downloads or configuration.

RED HAT SERVICES FOR OPENSHIFT ADOPTION

RED HAT OPEN INNOVATION LABS

EXPERIMENT Rapidly build prototypes, do DevOps, and be agile.

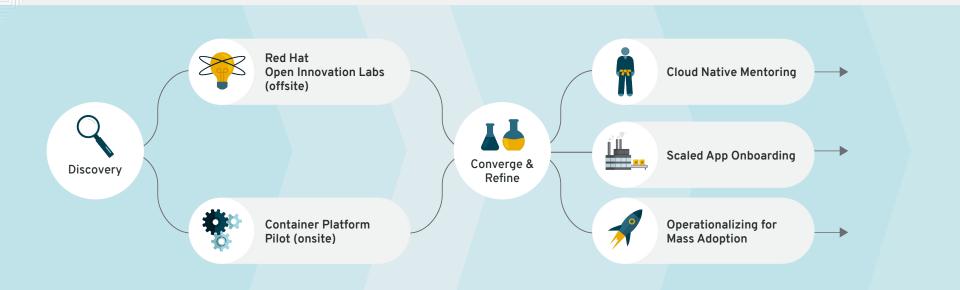
CATALYZE INNOVATION Bring modern application development back to your team.

IMMERSE YOUR TEAM Work side-by-side with experts in a residency-style engagement.

TO SHOW YOUR TEAMS HOW OPENSHIFT AND MODERN DEVELOPMENT PRACTICES CAN DRIVE INNOVATION: START WITH A 4- TO 12-WEEK LABS RESIDENCY

RED HAT CONTAINER ADOPTION PROGRAM

FRAMEWORK FOR SUCCESSFUL CONTAINER ADOPTION AND IT TRANSFORMATION:


Mentoring, training, and side-by-side collaboration to:

- Create a production platform and team to run it
- Create end-to-end container-driven deployment automation
- Scale application onboarding expertise
- Guide new Kubernetes-native development
- Align business with IT through included Red Hat Open Innovation Labs

TO BEGIN A COMPREHENSIVE PROGRAM (INCLUDING OPEN INNOVATION LABS): START WITH THE 12-WEEK <u>RED HAT</u> <u>CONSULTING CONTAINER PLATFORM PILOT</u>

CONTAINER ADOPTION PROGRAM

ESTIMATED PAYBACK TIME: 17 months [1] TOTAL THREE-YEAR BENEFITS NPV: \$10.1 M (USD) [1]

[1] <u>The Total Economic Impact of Red Hat Consulting's Container Adoption</u> <u>Program and Open Innovation Labs</u>, Forrester, 2018.

GENERAL DISTRIBUTION

THANK YOU

