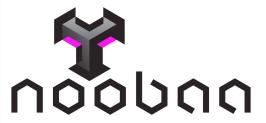
What's the next storage solution for OpenShift?

Matthias Muench

EMEA Specialist Solutions Architect

mmuench@redhat.com

Agenda

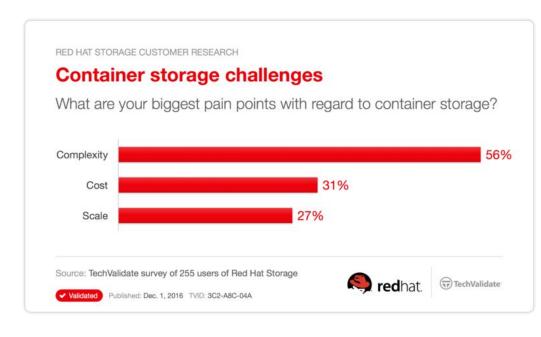

- What and Why?
- Architecture
- Use cases
- Sizing
- Demo

WHAT IS IT?

Add-On for OpenShift for running stateful apps

Highly scalable, production-grade persistent storage

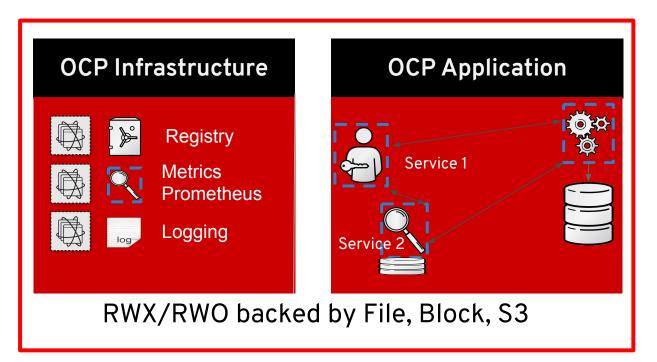
- For stateful applications running in Red Hat® OpenShift
- Optimized for Red Hat OpenShift Infrastructure services
- Developed, released and deployed in synch with Red Hat OpenShift
- Full stack supported by single vendor Red Hat
- Complete persistent storage fabric across hybrid cloud for OCP

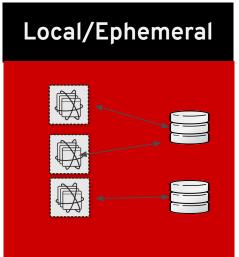


WHY IS STORAGE IMPORTANT FOR CONTAINERS?

Complexity. Cost. Scale.

Top five challenges with container adoption


- 1. Persistent storage
- 2. Data management
- 3. Multi-cloud or cross-data center
- 4. Networking
- 5. Scalability



WHY DO YOU NEED PERSISTENT STORAGE?

For infrastructure and stateful applications

Possible Persistent Storage Providers (OpenShift 4.2)

Volume Plug-in	ReadWriteOnce	ReadOnlyMany	ReadWriteMany
AWS EBS	$\overline{m{arphi}}$	-	-
Azure File	$\overline{m{ec{ec}}}$	v	$\overline{\mathbf{V}}$
Azure Disk	$\overline{m{ec{ec}}}$	-	-
Cinder	v	-	-
Fibre Channel	$\overline{m{arphi}}$	$\overline{\mathbf{v}}$	-
GCE Persistent Disk	$\overline{m{arphi}}$	-	-
HostPath	$\overline{m{arphi}}$	-	-
iSCSI	$\overline{m{arphi}}$	v	-
Local volume	$\overline{m{arphi}}$	-	-1
NFS	▽	v	▽
VMware vSphere	▽	-	-1

Additional in-tree:

- FlexVolume
- Flocker
- Ceph RBD (Ceph Block Device)
- CephFS (tech preview)
- GlusterFS

Additional:

through CSI (depends on driver)

Storage Provisioning in OpenShift

Static Provisioning:

- Storage admin creates storage volumes upfront
- OpenShift selects a predefined volume based upon claim, nearest available size
- No automated housekeeping causing administrative burden
- Error prone due to increasing complexity and resulting administrative overhead

Dynamic Provisioning:

- OpenShift user requests for storage by persistent volume claim (PVC)
- Delivers the exact requested size and type of storage volume
- No administrative overhead and storage admin involvement upfront
- Automated housekeeping, better efficiency

Security of Provisioning:

• <u>SElinux changes, custom security contexts</u>

OpenShift Container Storage What changes/d?

OpenShift

Transitions from OCP3 to OCP4 => migration needed

Deployments in OCP

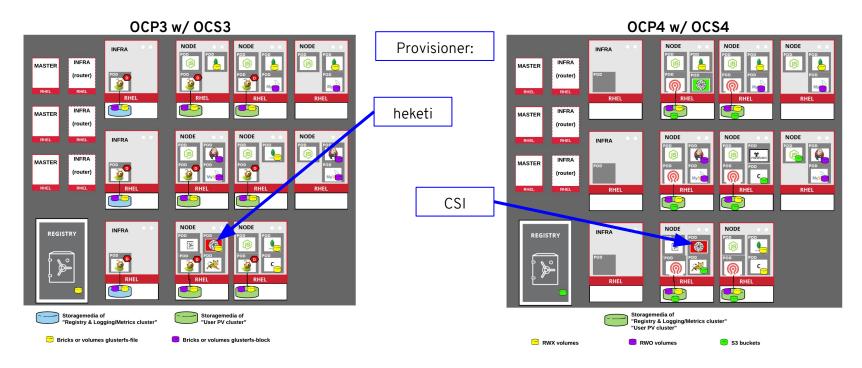
Everything operator based

Dynamic Provisioning:

CSI provides unified interface

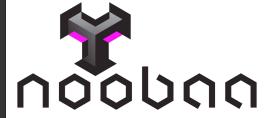
New storage needs:

S3 is widely used


OpenShift Container Storage:

- OCS3 will not work in OCP4
- Real proven S3 stack needed

- Technology and its structure
 - Gluster => Ceph
 - Ansible => Rook (deployment)
 - Heketi => CSI/Rook (provisioning)
- RWX and RWO how does it work?
 - Similar to current OCS 3 using PVC
- Different: protocol changes
 - iSCSI => rbd
 - GlusterFS => CephFS
 - + S3 (Noobaa vs. standard external)



ceph

Architecture

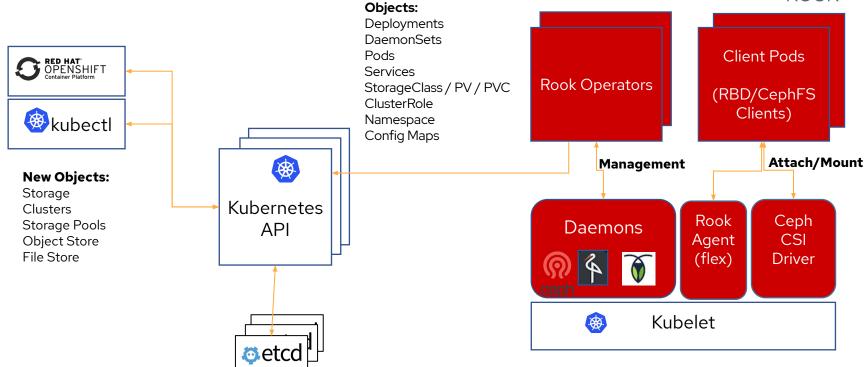
RED HAT OPENSHIFT CONTAINER STORAGE

aka RHOCS or OCS, v4.2 Technology Stack

- Orchestrator for Ceph storage services in OpenShift
- Responsible to simplify and automate the storage lifecycle
- Fully compliant with the new CSI kubernetes storage standard

- Multiprotocol storage offers Block, File and Object interface
- Self-healing, self-management and rock solid technology
- Scale-Up and Scale-Out, performance and capacity at scale

- Multi Cloud Gateway enables S3 federation
- Provides elastic S3 data placement and improves security
- Multi-Cloud, Hybrid-cloud, Multi-Site Buckets


Rook Ceph Operator

- The Operator leverages the full power of Kubernetes / OCP
 - Services, ReplicaSets, DaemonSets, Secrets, ...
- Contains all the logic to manage storage systems at scale
 - Handle stateful upgrades
 - Handle rebalancing the cluster
 - Handle health and monitoring tasks
- Not on the data path can be offline for minutes

ROOK ARCHITECTURE

CEPH COMPONENTS

Storage services

A web services gateway for object storage, compatible with S3 and Swift

RBD

A reliable, fully distributed block device with cloud platform integration

CEPHFS

A distributed file system with POSIX semantics & scale-out metadata

LIBRADOS

A library allowing apps to directly access RADOS (C, C++, Java, Python, Ruby

RADOS

A software-based reliable, autonomous, distributed object store comprised of self-healing, self-managing, intelligent storage nodes and lightweight monitors

ABOUT NOOBAA

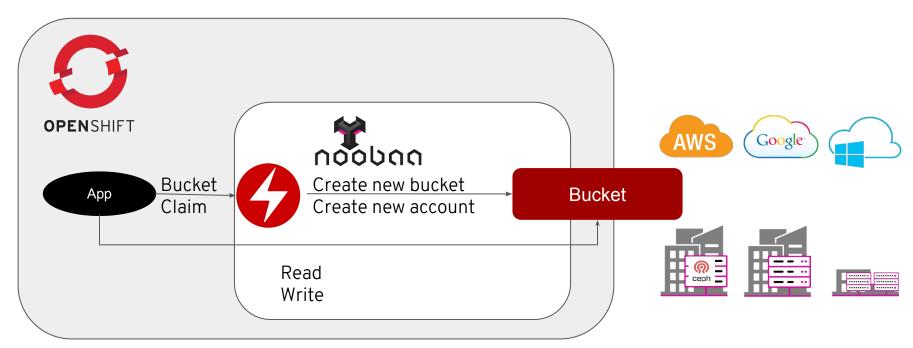
• OCS MULTI CLOUD GATEWAY (NOOBAA)

NooBaa provides a consistent S3 endpoint across different infrastructures (AWS, Azure, GCP, Bare Metal, VMware)

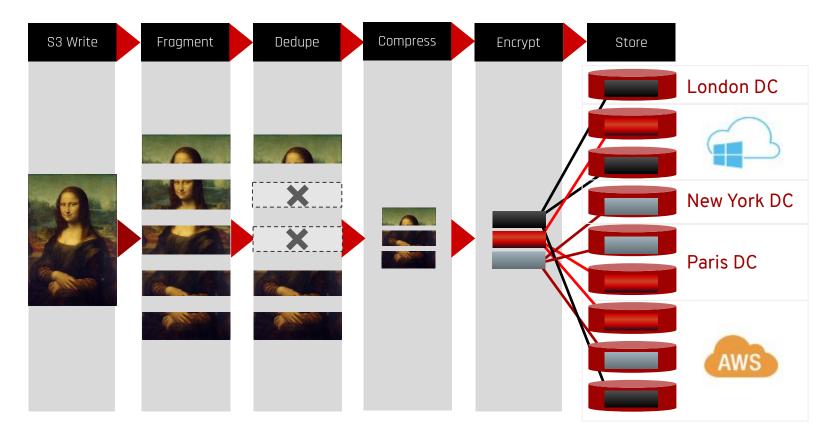
OCS MCG FUNCTIONALITY

Multi Cloud Object Gateway: Active/Active read/write across different clouds.

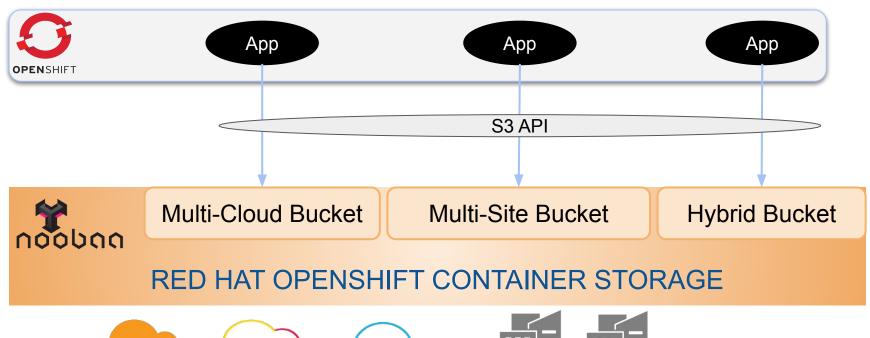
PRODUCTIZATION


productized as RHOCS Multi-Cloud Gateway, starting with OCS 4.2 (NooBaa, is upstream only, downstream **OCS Multi-Cloud-Gateway**)

NOOBAA

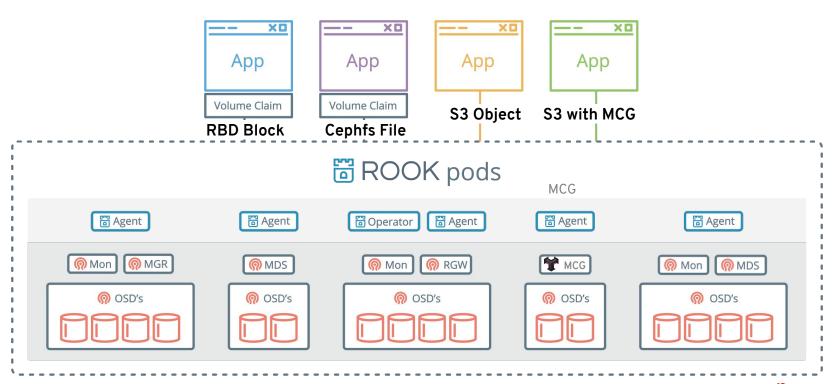


S3 Federation with multi-cloud gateway

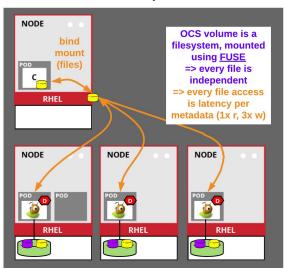


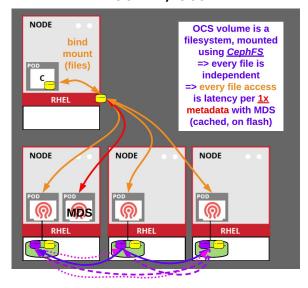
Architecture

Multi-Cloud Object Gateway (NooBaa)



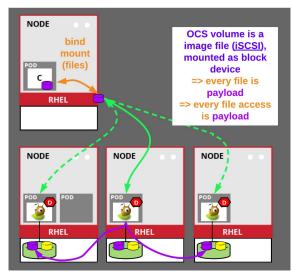
RHOCS ARCHITECTURE

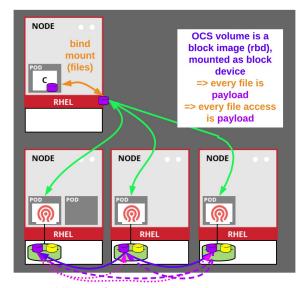

with Operator Lifecycle Manager (OLM)



RWX - how does it work?

OCP3 w/ OCS3

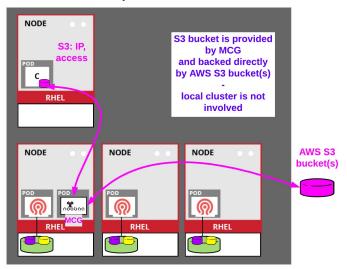

OCP4 w/ OCS4


RWO - how does it work?

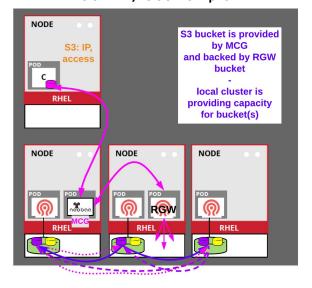
OCP3 w/ OCS3

- Single session, other failover only
- Same node replicates data

OCP4 w/ OCS4

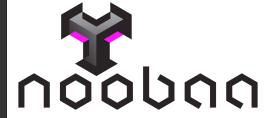


- All session
- All nodes replicate data (portions)



• S3 - how does it work? --- OCS3 S3 is TP (still)

OCP4 w/ OCS4 in AWS

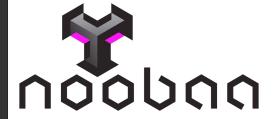

OCP4 w/ OCS4 on-prem

USE CASES

Use of OCS - What will change for applications?

Internal:

- Registry is using CephFS PVs or S3 (instead of glusterfs PV)
- Metrics and logging stay with block, but rbd based


Apps:

- Better latency and better throughput
- Apps w/o need of scale-out for pods should go to block (rbd) > RWO
- Apps w/ need of file haptic but w/o need of scale-out should go to block (rbd) > RWO
- Apps w/o need of file haptic but w/ need of scale-out should go to S3 (MCG) > Object
- Apps w/ need of file haptic and w/ need of scale-out should go to file (CephFS) > RWX

(n) ceph

SIZING

SIZING GUIDELINES

MINIMUM NODES #

- The MINIMUM amount of storage nodes is **3**

• REPLICA SIZE #

- Replica 3 (Erasure Coding planned on next releases)

PV SUPPORTED #

- Out-of-the-Box OCS4.2 supports up to **1500** PVs

ADDITIONAL NODES

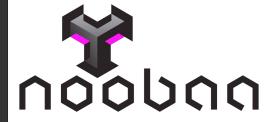
- Each additional node enables for **+500** PVs

MAXIMUM NODES #

- The MAXIMUM number of nodes in a cluster is 10

MAXIMUM PV #

- The MAXIMUM number of PVs can scale to **5000** PVs


OCS NODE CONFIG #

- MINIMUM OF 16vCPU AND 64GB RAM

DEMO

Thank you

Red Hat is the world's leading provider of

enterprise open source software solutions.

Award-winning support, training, and consulting

services make

Red Hat a trusted adviser to the Fortune 500.

- n linkedin.com/company/red-hat
- youtube.com/user/RedHatVideos
- facebook.com/redhatinc
- twitter.com/RedHat

