
Red Hat OpenShift 4 - Installation

Robert Bohne
SR. SPECIALIST SOLUTION ARCHITECT | OPENSHIFT
Twitter: @RobertBohne

1

OPENSHIFT CONTAINER PLATFORM | Architectural Overview

2

WORKERMASTER

Red Hat® OpenShift®

services

STORAGE

Kubernetes
services

Monitoring | Logging | Tuned

SDN | DNS | Kubelet

Infrastructure
services

etcd

NETWORKCOMPUTE

Registry

Prometheus | Grafana
Alertmanager

Kibana | Elasticsearch

Router
Developers

Admins

WORKER

Monitoring | Logging | Tuned

SDN | DNS | Kubelet

Registry

Prometheus | Grafana
Alertmanager

Kibana | Elasticsearch

Router

3

The New Platform Boundary
OpenShift 4 is aware of the entire infrastructure and

brings the Operating System under management

AUTOMATED OPERATIONS

KUBERNETES

RHEL or RHEL CoreOS

OpenShift & Kubernetes
certificates & security settings

container runtime config

allowed maintenance windows

software defined networking

kernel modules

device drivers

network interfaces

security groups

Nodes & Operating System

OPERATING SYSTEM

OPERATING SYSTEM

OPENSHIFT PLATFORM
OPENSHIFT PLATFORM

OPENSHIFT 4 (only)OPENSHIFT 3 & 4

INFRASTRUCTURE

Full-stack automated install

Red Hat Enterprise Linux CoreOS

5

Immutable foundation for
OpenShift clusters

Ignition-based Metal and
Cloud host configuration

Over-the-air automated
updates

Decreased attack surface

Optimized for running
containers

Minimal Linux distribution

RED HAT OPENSHIFT 4

Immutable Operating System
OPENSHIFT PLATFORM

Red Hat Enterprise Linux CoreOS is versioned with
OpenShift
CoreOS is tested and shipped in conjunction with the platform.
Red Hat runs thousands of tests against these configurations.

Red Hat Enterprise Linux CoreOS is managed by the cluster
The Operating system is operated as part of the cluster, with
the config for components managed by Machine Config
Operator:

● CRI-O config
● Kubelet config
● Authorized registries
● SSH config

v4.1.6

v4.1.6

RHEL CoreOS admins are responsible for:
Nothing.
All is installed via Operators and Container Images!
There are no RPM’s anymore!

OpenShift Architecture

7

A lightweight, OCI-compliant container runtime

Minimal and Secure
Architecture

Optimized for
Kubernetes

Runs any
OCI-compliant image

(including docker)

BROAD ECOSYSTEM OF WORKLOADS

CRI-O Support in OpenShift

CRI-O 1.13 Kubernetes 1.13 OpenShift 4.1

CRI-O 1.14 Kubernetes 1.14 OpenShift 4.2

CRI-O 1.12 Kubernetes 1.12 OpenShift 4.0

CRI-O tracks and versions identical to Kubernetes, simplifying support permutations

● A Kubernetes thing
● Now part of CNCF! (April 8th)
● OCI daemon
● Implements Kubelet Container Runtime

Interface (CRI)

CR
I-O

Container

Host

Container

Container

Container

Ku
be

rn
et

es

RE
AD

O
N

LY

SECURITY FEATURES
Run securely in a production cluster
No daemon
Read-only containers
Enable fewer capabilities
User namespaces
FIPS mode support

9

OCI AND CRI-O

● Built for interfacing with Docker registry
● CLI for images and image registries
● Rejected by upstream Docker ¯_(ツ)_/¯
● Allows remote inspection of image

meta-data - no downloading
● Can copy from one storage to another

SKOPEO

Image
Repository

Image
Registry

Host
/var/lib/containers
or
/var/lib/docker

SECURITY FEATURES
Share securely
No daemon
Inspect remote images
No pulling potentially malicious images
Non-root copy. Bridge between registries.

10

IMAGE COPY WITH SKOPEO

● @ podman.io
● Client only tool, based on the Docker CLI. (same+)
● No daemon!
● Storage for

○ Images - containers/image
○ Containers - containers/storage

● Runtime - runc
● Shares state with CRI-O and with Buildah!

PODMAN

Images

Image
Registry

Containers

Kernel

SECURITY FEATURES
Run and develop securely
No daemon
Run without root
Isolate with user namespaces
Audit who runs what

11

The new container CLI

http://podman.io

12

● Now buildah.io
● Builds OCI compliant images
● No daemon - no “docker socket”
● Does not require a running container
● Can use the host’s user’s secrets.
● Single layer, from scratch images are made

easy and it ensures limited manifest.
● If needed you can still maintain Dockerfile

based workflow

Base RHEL

OS Update Layer

Java Runtime Layer

Application Layer

Java runtime and
dependencies, and

Application

From scratch,
single layer

From base,
multi-layer

SECURITY FEATURES
Build securely
No daemon
Shrink the attack surface
Fine-grained control of the layers
Run builds isolated
Better secret management

Why use Buildah?

http://buildah.io

13

● Docker, Red Hat et al. June 2015
● Two specifications

○ Image format
■ How to package an OCI Image with sufficient information to launch

the application on the target platform
○ Runtime

■ How to launch a “filesystem bundle” that is unpacked on disk
● Version 1.0 of each released July 19th 2017
● Distribution spec started in April, 2018.

14

{
 "ignition": {
 "config": {},
 "timeouts": {},
 "version": "2.1.0"
 },
 "passwd": {
 "users": [
 {
 "name": "core",
 "passwordHash": "$6$43y3tkl...",
 "sshAuthorizedKeys": [
 "key1"
]
 }
]
 },
 "storage": {},
 "systemd": {}
}

Ignition applies a declarative node
configuration early in the boot process.
Unifies kickstart and cloud-init.

● Generated via openshift-install &
MCO

● Configures storage, systemd units,
users, & remote configs

● Executed in the initramfs

One Touch provisioning via Ignition

Machine generated; machine validated

15

● RHCSA Step 1

○ Boot into “early userspace” and

change a file (/etc/shadow)

● Ignition works the same way

○ Boots into “early userspace”

○ Change disks, files based on JSON

○ Starts the machine

● Based on standard Linux startup process

How Ignition works

https://www.rootusers.com/how-to-reset-root-user-password-in-centos-rhel-7/
https://en.wikipedia.org/wiki/Linux_startup_process

Network configuration

label linux
 menu label ^Install RHEL CoreOS
 kernel /images/vmlinuz
 append initrd=/images/initramfs.img nomodeset rd.neednet=1 coreos.inst=yes
ip=192.168.122.9::192.168.122.1:255.255.255.0:core2.example.com:enp1s0:none nameserver=192.168.122.1
coreos.inst.install_dev=sda coreos.inst.image_url=http://192.168.122.1/rhcos.raw.gz
coreos.inst.ignition_url=http://192.168.122.1/static.ign

16

● Default: DHCP!

● Static IP via Kernel Arguments:

17

● First-boot only

○ Provisioning tool not a CM tool

○ Pass .ign

■ to the firmware via HTTP!

■ or cloud metadata svc (i.e. AWS user-data)

● There’s a great deep dive on Ignition here

Ignition Essentials

If the first-boot cfg needs tweaks, re-provision the node from scratch!

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html#instancedata-add-user-data
https://www.youtube.com/watch?v=aMogSQ2HFnw

CONFIDENTIAL designator

Updating - Patching

18

Q: How to perform updating, patching?

A: Red Hat Enterprise Linux CoreOS, or RHCOS, is intended to be consumed as an
embedded version of RHEL that is purpose built-to run OpenShift v4. RHCOS isn't
managed or updated outside of OpenShift.

Updates are pushed to the platform and pick up OS security errata. If a customer is
staying on top of OCP updates, then RHCOS will always be current. The management,
and the fact that updates are not independent from the platform make RHCOS behave
much closer to an appliance than a traditional OS.

CONFIDENTIAL designator

Satellite

19

Q: Can we integrate with Satellite?

A: RHEL CoreOS does not include subscription-manager and cannot be registered to
Satellite like RHEL.

Satellite can provide value in two major ways for RHEL CoreOS:

▸ Provisioning - Satellite is able to serve ignition configurations as well as serve the
bits needed for a PXE install.

▸ Mirroring updates - Satellite’s registry can be used to serve the containerized
content in disconnected environments.

Installation Experiences
OPENSHIFT PLATFORM

Full Stack Automated

Simplified opinionated “Best
Practices” for cluster provisioning

Fully automated installation and
updates including host container
OS.

Pre-existing Infrastructure

Customer managed resources &
infrastructure provisioning

Plug into existing DNS and security
boundaries

OPENSHIFT CONTAINER PLATFORM

Generally AvailableProduct Manager: Katherine Dubé

HOSTED OPENSHIFT

Azure Red Hat OpenShift

Deploy directly from the Azure
console. Jointly managed by Red
Hat and Microsoft Azure engineers.

OpenShift Dedicated

Get a powerful cluster, fully
Managed by Red Hat engineers and
support.

What's new in OpenShift 4.3

4.3 Supported Providers

Generally Available

Full Stack Automation (IPI) Pre-existing Infrastructure (UPI)

PMs: Katherine Dubé (AWS, Azure, GCP), Maria Bracho (BM UPI, VMware, Upgrades), Peter Lauterbach (RHV), Ramon Acedo Rodriguez (OSP, BM IPI), Mike Barrett (IBM Z & Power)

*

* Support planned for an upcoming 4.3 z-stream release

OPENSHIFT PLATFORM

*

What means
OPENSHIFT PLATFORM

● Installation on physical hardware ;-)

● Installation on Virtual Machines WITHOUT any guest tool / cloud integration!
Deploying OpenShift 4.x on non-tested platforms using the bare metal install
method
For example Hyper-V: Red Hat Enterprise Linux 8 Ecosystem

https://access.redhat.com/articles/4207611
https://access.redhat.com/articles/4207611
https://access.redhat.com/ecosystem/search/#/ecosystem/Red%20Hat%20Enterprise%20Linux?sort=sortTitle%20asc&certifications=Red%20Hat%20Enterprise%20Linux%208&vendors=Microsoft&category=Server

Full Stack Automated Deployments
OPENSHIFT PLATFORM

Generally AvailableProduct Manager: Katherine Dubé

Day 1: openshift-install - Day 2: Operators

openshift-install deployed

Control Plane Worker Nodes
User managed

Operator managed

Cloud Resources

RH CoreOS

OCP Cluster

OCP Cluster Resources

RH CoreOSRHEL CoreOS

Cloud Resources

RH CoreOSRH CoreOSRHEL CoreOS

Full Stack Automated Deployments
OPENSHIFT PLATFORM

Generally AvailableProduct Manager: Katherine Dubé

Simplified Cluster Creation
Designed to easily provision a “best practices” OpenShift
cluster

● New CLI-based installer with interactive guided workflow that
allows for customization at each step

● Installer takes care of provisioning the underlying
Infrastructure significantly reducing deployment complexity

● Leverages RHEL CoreOS for all node types enabling full stack
automation of installation and updates of both platform and
host OS content

Faster Install
The installer typically finishes within 30 minutes

● Only minimal user input needed with all non-essential install
config options now handled by component operator CRD’s

● 4.x provides support for AWS deployments with additional
provider support planned in future releases

● See the OpenShift documentation for more details

$./openshift-install --dir ./demo create cluster
? SSH Public Key /Users/demo/.ssh/id_rsa.pub
? Platform aws
? Region us-west-2
? Base Domain example.com
? Cluster Name demo
? Pull Secret [? for help]

INFO Creating cluster...
INFO Waiting up to 30m0s for the Kubernetes API...
INFO API v1.11.0+c69f926354 up
INFO Waiting up to 30m0s for the bootstrap-complete event...
INFO Destroying the bootstrap resources...
INFO Waiting up to 10m0s for the openshift-console route to be created...
INFO Install complete!
INFO Run 'export KUBECONFIG=<your working directory>/auth/kubeconfig' to
manage the cluster with 'oc', the OpenShift CLI.
INFO The cluster is ready when 'oc login -u kubeadmin -p <provided>'
succeeds (wait a few minutes).
INFO Access the OpenShift web-console here:
https://console-openshift-console.apps.demo.example.com
INFO Login to the console with user: kubeadmin, password: <provided>

https://docs.openshift.com/container-platform/4.1/installing/installing_aws/installing-aws-default.html

Deploying to Pre-existing Infrastructure
OPENSHIFT PLATFORM

Generally AvailableProduct Manager: Katherine Dubé

Day 1: openshift-install - Day 2: Operators + Customer Managed Infra & Workers

openshift-install deployed

Cloud Resources

RH CoreOS

OCP Cluster

OCP Cluster Resources

Control Plane

Cloud Resources

Worker Nodes

Customer deployed

User managed

Operator managed

Note: Control plane nodes
must run RHEL CoreOS!

RH CoreOSRHEL CoreOS RHEL 7RHEL
CoreOS

Comparison between deployments methods
OPENSHIFT PLATFORM

Generally AvailableProduct Manager: Katherine Dubé

Full Stack Automation Pre-existing Infrastructure

Build Network Installer User

Setup Load Balancers Installer User

Configure DNS Installer User

Hardware/VM Provisioning Installer User

OS Installation Installer User

Generate Ignition Configs Installer Installer

OS Support Installer: RHEL CoreOS User: RHEL CoreOS + RHEL 7

Node Provisioning / Autoscaling Yes Only for providers with OpenShift
Machine API support

Customization & Provider Support Best Practices: AWS Yes: AWS, Bare Metal, & VMware

Provider Ignition stored in? Load balancer? Registry Storage?

IPI AWS, GCP, Azure S3 Cloud Provider S3

IPI OpenStack Swift KeepaliveD Swift

UPI Bare Metal Own Web Server Own Nothing! NFS?*

UPI VMware Own Web Server Own Nothing! NFS?*

Some dirty details:

DNS
Nodes

● A records

● PTR records - at every reboot RH Core OS determination hostname via PTR record!

Cluster / Load Balancer
● *.apps.<CN>.<BD>. 86400 IN A <IP of load balancer>
● api.<CN>.<BD>. 86400 IN A <IP of load balancer>
● api-int.<CN>.<BD>. 86400 IN A <IP of load balancer>

Etcd Cluster
● SRV Records

○ # _service._proto.name. TTL class SRV priority weight port target.
○ _etcd-server-ssl._tcp.<CN>.<BD> 86400 IN SRV 0 10 2380 etcd-0.<CN>.<BD>.
○ _etcd-server-ssl._tcp.<CN>.<BD> 86400 IN SRV 0 10 2380 etcd-1.<CN>.<BD>.
○ _etcd-server-ssl._tcp.<CN>.<BD> 86400 IN SRV 0 10 2380 etcd-2.<CN>.<BD>.

● Additional A records to the Node/Host-names
○ etcd-0.<CN>.<BD>. 86400 IN A <IP of controleplan/master node 0>
○ etcd-1.<CN>.<BD>. 86400 IN A <IP of controleplan/master node 1>
○ etcd-2.<CN>.<BD>. 86400 IN A <IP of controleplan/master node 2>

Do NOT create PTR’s!

<CN> = Cluster Name
<BD> = Base Domain

29

Load balancer & DHCP

30

Bildquelle: Timo Klostermeier / pixelio.de

Deploy to pre-existing infrastructure for AWS, Bare Metal, GCP, & VMware!

OPENSHIFT PLATFORM

Generally AvailableProduct Manager: Katherine Dubé

Customized OpenShift Deployments
Enables OpenShift to be deployed to user managed resources and
pre-existing infrastructure.

● Customers are responsible for provisioning all infrastructure
objects including networks, load balancers, DNS, hardware/VMs
and performing host OS installation

● Deployments can be performed both on-premise and to the
public cloud

● OpenShift installer handles generating cluster assets (such as
node ignition configs and kubeconfig) and aids with cluster
bring-up by monitoring for bootstrap-complete and
cluster-ready events

● Example native provider templates (AWS CloudFormation and
Google Deployment Manager) included to help with user
provisioning tasks for creating infrastructure objects

● While RHEL CoreOS is mandatory for the control plane, either
RHEL CoreOS or RHEL 7 can be used for the worker/infra nodes

$ cat ./demo/install-config.yaml
apiVersion: v1
baseDomain: example.com
compute:
- name: worker
 replicas: 0
controlPlane:
 name: master
...

$./openshift-install --dir ./demo create ignition-config
INFO Consuming "Install Config" from target directory

$./openshift-install --dir ./demo wait-for bootstrap-complete
INFO Waiting up to 30m0s for the Kubernetes API at
https://api.demo.example.com:6443...
INFO API v1.11.0+c69f926354 up
INFO Waiting up to 30m0s for the bootstrap-complete event...
$./openshift-install --dir ./demo wait-for cluster-ready

INFO Waiting up to 30m0s for the cluster at
https://api.demo.example.com:6443 to initialize...
INFO Install complete!

Pitfall

● Generates certificates that are only valid
for 24 hours!

● To restart: delete the config dir “./demo” !!

Booting all machines

Bootstrap

Master NMaster NMaster N

Master NMaster NWorker

Web Server

 "ignition": {
 "config": {
 "append": [
 {
 "source":
"https://api-int.demo.openshift.pub:22623/config/(master|worker)",
 "verification": {}
[...snipped...]
 "security": {
 "tls": {
 "certificateAuthorities": [
 {
 "source": "data:text/plain;charset=utf-8;base64,LS0t..==",
 "verification": {}
 }
[...snipped...]

The Ignition is quite huge! It contains everything you need to install
OpenShift 4, except the images.

Boot the cluster

Bootstrap Master NMaster NMaster N Master NMaster NWorker

Bootstrapping process step by step:
1. Bootstrap machine boots and starts hosting the remote resources required for master machines to boot.

2. Master machines fetch the remote resources from the bootstrap machine and finish booting.
3. Master machines use the bootstrap node to form an etcd cluster.
4. Bootstrap node starts a temporary Kubernetes control plane using the newly-created etcd cluster.
5. Temporary control plane schedules the production control plane to the master machines.
6. Temporary control plane shuts down, yielding to the production control plane.
7. Bootstrap node injects OpenShift-specific components into the newly formed control plane.
8. Installer then tears down the bootstrap node or if user-provisioned, this needs to be performed by the administrator.

label linux
 menu label ^Install RHEL CoreOS
 kernel /images/vmlinuz
 append initrd=/images/initramfs.img nomodeset rd.neednet=1 coreos.inst=yes
ip=192.168.122.9::192.168.122.1:255.255.255.0:core2.example.com:enp1s0:none nameserver=192.168.122.1
coreos.inst.install_dev=sda coreos.inst.image_url=http://192.168.122.1/rhcos.raw.gz
coreos.inst.ignition_url=http://192.168.122.1/static.ign

Add a node

BareMetal

Machine Set

1. Boot a node with minimal ignition config:
a. certificateAuthorities
b. Point to MCO: https://api-int.demo.openshift.pub:22623/config/(master|worker)

2. Node create a CSR (oc get csr)
3. Someone approved CSR

a. UPI: administrator 👨🏻💻 - during installation auto-approve!
b. IPI: Machine Operator

4. Node join the cluster
5. Node starts all pods they need to be a perfect member! (sdn, registry ca,....)

Add a node

https://api-int.demo.openshift.pub:22623/config/(master%7Cworker)

36

subscription-manager register --username=<user_name> --password=<password>

subscription-manager repos \
 --enable="rhel-7-server-rpms" \
 --enable="rhel-7-server-extras-rpms" \
 --enable="rhel-7-server-ose-4.2-rpms"

vi inventory/hosts

[all:vars]
ansible_user=root
#ansible_become=True

openshift_kubeconfig_path="~/.kube/config"

[new_workers]
mycluster-worker-0.example.com
mycluster-worker-1.example.com

ansible-playbook -i /<path>/inventory/hosts playbooks/scaleup.yml

Add a node RHEL Node

WIHTOUT

Over the Air (OTA) Updates!

● OpenShift retrieves the
list of available updates

● Admin selects the target
version

● OpenShift is updated
over the air

● Auto-update support

Over the Air (OTA) Updates

Only with Red Hat CoreOS - it doesn’t matter how (IPI vs UPI) you install the cluster!

OPENSHIFT PLATFORM

Disconnected “Air-gapped” Installation & Upgrading

Generally AvailableProduct Manager: Katherine Dubé

● Support for installing and updating of OpenShift clusters in air-gapped environments
● Admin first need to mirror installation and update payload images to a local container registry, then openshift-install and

‘oc adm upgrade’ can be configured to leverage the offline content

Installation Procedure
● Mirror OpenShift content to local container registry in the disconnected environment
● Generate install-config.yaml: $./openshift-install create install-config --dir <dir>

○ Edit and add pull secret (PullSecret), CA certificate (additionalTrustBundle), and
image content sources (ImageContentSources) to install-config.yaml

● Set the OPENSHIFT_INSTALL_RELEASE_IMAGE_OVERRIDE environment variable during
the creation of the ignition configs

● Generate the ignition configuration: $./openshift-install create ignition-configs --dir
<dir>

● Use the resulting ignition files to bootstrap the cluster deployment

Overview
● 4.2 introduces support for installing and updating OpenShift

clusters in disconnected environments
● Requires local Docker 2.2 spec compliant container registry to host

OpenShift content
● Designed to work with the user provisioned infrastructure

deployment method
○ Note: Will not work with Installer provisioned infrastructure

deployments

Admin

Local Container
Registry

Quay.io
Container
Registry

mirror update image:
$ oc adm -a <secret_json> release mirror \
 --from=quay.io/<repo>/<release:version> \
 --to=<local registry>/<repo> \
 --to-release-image=<local registry>/<repo:version>
provide cluster with update image to update to:
$ oc adm upgrade --to-mirror=<local repo:version>

Local Copy of
Update Image

Disconnected
OpenShift Cluster

Red Hat sourced
Update Image

Mirrored to
local registry

Cluster
updated locally

Customer Cluster

OPENSHIFT PLATFORM

Cluster-wide Egress Proxy

Generally AvailableProduct Manager: Marc Curry & Katherine Dubé

● Support for installing and updating of OpenShift clusters in air-gapped environments
● Admin first need to mirror installation and update payload images to a local container registry, then openshift-install and

‘oc adm upgrade’ can be configured to leverage the offline content

Overview
● 4.2 introduces support for installing and updating OpenShift clusters through a corporate proxy server
● Leverages new proxy controller within the cluster-network-operator, which is responsible for:

○ Reconciling a proxy object and writing spec > status upon successful validation.
○ Reconciling user-provided trust bundles referenced by trustedCA, validating the trust bundle

certificates, merging the certificates with the system trust bundle and publishing the merged bundle
to the openshift-config-managed/trusted-ca-bundle configmap.

Installation Procedure
● Installer will use PROXY* environment variables from the shell it’s invoked from
● Generate install-config.yaml: $./openshift-install create install-config --dir <dir>

○ Edit proxy information (httpProxy, httpsProxy, & noProxy) and CA certificate
(‘additionalTrustBundle’) to install-config.yaml

● Installer validates the provided install-config.yaml parameters, renders the necessary assets to create the
cluster, and initiates the installation process based on the install method used:
$./openshift-install create cluster --dir <dir>

Corporate
Proxy Server

Proxy Connected
OpenShift Cluster

Customer Cluster

Internet

Quay.io
Container
Registry

Backend
Services

$ oc get proxy/cluster -o yaml
apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 creationTimestamp: "2019-08-21T22:36:49Z"
 generation: 2
 name: cluster
 resourceVersion: "24913"
 selfLink: /apis/config.openshift.io/v1/proxies/cluster
 uid: 2a344b01-d267-11f9-a4f3-025de4b59c38
spec:
 httpProxy: http://<username>:<pswd>@<ip>:<port>
 httpsProxy: https://<username>:<pswd>@<ip>:<port>
 noProxy: example.com
 readinessEndpoints:
 - http://www.google.com
 - https://www.google.com
 trustedCA:
 name: user-ca-bundle
status:
 httpProxy: http://<username>:<pswd>@<ip>:<port>
 httpsProxy: https://<username>:<pswd>@<ip>:<port>
 noProxy:
10.0.0.0/16,10.128.0.0/14,127.0.0.1,169.254.169.254,172.30
.0.0/16,api-int.demo.example.com,api.demo.example.openshif
t.com,etcd-0.demo.example.com,etcd-1.demo.example.com,etcd
-2.demo.example.com,example.com,localhost

An admin with privileges can interact with the proxy object
using ‘oc’ commands (use the ‘oc edit’ command to modify
the proxy information.) Here is an example proxy config:

CONFIDENTIAL Designator

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

40

Questions?

