
Modernizing with containers and
cloud native technologies

Taming the Beast

Markus Eisele

Developer Adoption Lead EMEA

1

Markus Eisele

Developer Adoption Lead EMEA
15 years developer and architect with Enterprise Java (Automotive, Finance, Insurance)
6 years Developer Relations
150+ presentations, 200+ articles

twitter.com/myfear
https://www.linkedin.com/in/markuseisele/

Taming the Beast

3

I am going to talk about..

● Why are we here? What are the challenges?
● Why Buzzwords won’t solve your problems.
● Where to even start? Migration challenges.
● Define Success! Begin with the End in Mind.
● It’s not (only) about technology!
● Where to go from here?

Innovation
culture

Cloud-native
applications

AI & machine
learning

Internet of
Things Analytics

Creating value depends on your
ability to deliver applications faster

Why are we here? What are the challenges?

4

Shifting investment to innovation

Why are we here? What are the challenges?

5

It’s about efficiency, agility, & speed

IT optimization

Gain greater
efficiency while

building a
cloud-ready
foundation

Agile integration

Integrate
applications and

data to identify and
act on opportunities

Hybrid cloud
infrastructure

Enable data and
application

portability across
cloud platforms

Cloud-native
development

Quickly build and run
scalable applications

in dynamic
environments

Automation

Reduce costs,
complexity, and
errors deploying

infrastructure
and applications

6

Careful about Buzzwords
Or: Only using Microservices doesn’t solve your problems.

7

There is sooo much more that is needed!

Container Platform-As-A-Service

Core Systems
Base Microservices Layer

- Simple Services
- Bounded Application Domain

Composite Layer
- Service Discovery
- Event Bus
- Orchestration
- Caching

Gateway Layer
- API Management
- Policies
- Routing
- Caching

Corporate Channels Consumer Channels

Event-Driven Data Integration
- Hide Data-Level Integration Complexity
- Data Streaming Pipeline

Risk Management

Compliance

General Ledger

Treasury

Data Lake

Payment Gateway

Card Gateway

KYC Services

Open Banking

Careful about Buzzwords

8

And I don’t have time for all of this today...

Container Platform-As-A-Service

Core Systems
Base Microservices Layer

- Simple Services
- Bounded Application Domain

Composite Layer
- Service Discovery
- Event Bus
- Orchestration
- Caching

Gateway Layer
- API Management
- Policies
- Routing
- Caching

Corporate Channels Consumer Channels

Event-Driven Data Integration
- Hide Data-Level Integration Complexity
- Data Streaming Pipeline

Risk Management

Compliance

General Ledger

Treasury

Data Lake

Payment Gateway

Card Gateway

KYC Services

Open Banking

Careful about Buzzwords

Careful about Buzzwords

Define the Core

▪ Existing Core Capabilities
▪ Functional Gap Assessment
▪ Target Deployment Model
▪ Core Modernization Approach

Define the Customer
Experience Layer

▪ Define Customer Centric requirements
▪ Assess Existing CX Framework vs. Build
▪ Integration Requirements
▪ Data Gap Analysis

Define the Integration

▪ Existing Integration Capabilities
▪ Define Partner Solution Ecosystem
▪ Define Integration requirements (Data Sources,

Service Integration, Messaging, APIs)

Define the Technology Stack

▪ Technology Stack Assessment across Core, CX,
and external services

▪ Deployment model (IaaS, PaaS, Hybrid)
▪ Define Target Development Platform
▪ Development skills Gap Analysis

9

High Level Approach
to define your ideal
Platform

10

Let’s just assume it’s OpenShift and we want to...

MonolithsCloud Native Application

Careful about Buzzwords

● Moving existing apps to containers
● Creating modern applications
● The developer lifecycle around it.

Where to even start? Migration challenges.

Where to even start? Migration challenges.

11

Similar to Rehost

Augment with new layers - new

capabilities

Deploy on PaaS

New integration points between legacy

and new layers

REFACTORREPLATFORM

Legacy is totally replaced

New interfaces and data

Use PaaS to run

Some data and features can be

re-wrapped, but mostly are retired.

REHOST

Containerize existing workloads

Deploy them on a PaaS

Keep external integrations and data on

legacy

Legacy applications have to be well

written and suited

No single best pattern

Workload Migration Patterns

Where to even start? Migration challenges.

12

Migration Cost

M
ig

ra
tio

n
Ti

m
e

Generally the most expensive
and longest

REHOST
(Lift and Shift)

REPLATFORM
(Augment with new

Layers)

REFACTOR
(RIP and Rewrite)

B
us

in
es

s
V

al
ue

WHAT are Cloud Native Applications?

Where to even start? Migration challenges.

13

SERVICE-BASED
ARCHITECTURE

API CONTAINERS DEVOPS

Where to even start? Migration challenges.

Cloud-Native architecture
is NOT magic pixie dust

14

Adopting microservices won’t address:
● Poor code quality
● Lack of automated testing
● Poor development process
● ….

And might make things worse!

Where to even start? Migration challenges.

Do it incrementally

15

WEB UI

MOD
A

MOD
B

MOD
C

MOD
D

DATA ACCESS

AUTHORIZATION

SVC
C

API Gateway

A
U

TH
O

R
IZATIO

N

SVC
A

SVC
B

SVC
D

Incrementally migrate functionality from existing application to new (strangler) application

MONOLITH

Where to even start? Migration challenges.

Let new features become new services

16

Instead of new modules

WEB UI

MOD
A

MOD
B

MOD
C

Integration

DATA ACCESS

AUTHORIZATION
API Gateway

A
U

TH
O

R
IZATIO

N

SVC
D

Where to even start? Migration challenges.

17

Let the monolith shrink over time

Time

Where to even start? Migration challenges.

And go on until...

18

● The monolith is eliminated

● Solved software delivery problems

● Higher priority work

Cost vs. Benefit

19

Benefit

▸ Solves a significant problem

▸ Velocity ⇒ frequently updated

▸ Scalability ⇒ Conflicting

resource requirements

▸ …

Cost

▸ Changing the monolith and

adapting/rewriting module

▸ Difficulty in decoupling/

breaking dependencies

▸ Need to participate in

sagas/compensating

transactions

▸ Decoupling inbound

dependencies

▸ ...

Where to even start? Migration challenges.

Cost vs. Benefit

20

Find the right candidates first

Benefit of extraction

Ea
se

 o
f e

xt
ra

ct
io

n
high

high
low

Software Design Implications

21

Architecture Principles

Single Responsibility Principle

Service Oriented Architecture

Encapsulation

Separation of Concern

Loose Coupling

Hexagonal Architecture

Design Patterns

Domain-driven Design

Bounded Contexts

Event Sourcing

CQRS

Eventual Consistency

Context Maps

Where to even start? Migration challenges.

Best Practices

22

Design for Automation

Designed for failure

Service load balancing and automatic scaling

Design for Data Separation

Design for Integrity

Design for Performance

Where to even start? Migration challenges.

(Micro) Service Approach

23

Focus on reducing time to value

● Small and simple

● API Focused

● Smaller and faster to test

● Fast start-up time

● Deployed independently

● Design for failure

● Foster new technologies adoption

Where to even start? Migration challenges.

Define Success! Begin with the End in Mind.

24

● Success != Number of Microservices
● Improved metrics:

○ Reduced lead time
○ Increased deployment frequency
○ Reduced changed failure rate

● …

25

It’s not (only) about technology!

Cloud Native is MUCH MORE

than your application

architectureCLOUD NATIVE

MICROSERVICES
FAST MONOLITH

Evolving Legacy the Red Hat Way.

It’s not (only) about technology!

26

Platform

● Treat integration and process automation like code.
● Implement CI/CD pipelines for faster releases and A/B testing.
● Modern, cloud-native application development requires more agile

integration. Use container-based, distributed architectures to deploy
business logic, integration, data stream processing across environments.

Process

● Move integration and process automation to agile development teams
that cross business and technical users.

● Define overall design goals and guidelines to decentralize centers of
excellence.

● Define and measure metrics around dependability, speed, flexibility
and cost.

People

● Align integration or decision logic with strategic business goals.
● Define an integration or data strategy.
● Communicate goals and cultivate buy-in for the process and outcomes.

Communication, Collaboration and Openness - People, Process and

Technology

It’s not (only) about technology!

27

● It’s common sense, but well worth investing in good
practices

● Little steps
● Information is shared and publicized
● Self organizing teams for agility
● Development is paired
● Regular feedback is essential
● Involve all the stakeholders in the project - no silos
● Develop for CI
● Build for production
● Red Hat are well placed to help with DevOps culture

SPRING & JAVA™ EE MICROSERVICES FUNCTIONS

LANGUAGES DATABASES APPLICATION SERVICES

CODE

BUILD TEST DEPLOY

MONITORREVIEW

Self-service
provisioning

Automated
build & deploy

CI/CD
pipelines

Consistent
environments

Configuration
management

App logs &
metrics

Full Application Lifecycle

28

https://developers.redhat.com

Stay up to date with latest information and developments

29

30

Further Reading

https://developers.redhat.com/ebooks

https://developers.redhat.com/ebooks

A monthly webinar series for developers.
#OpenShift #Microservices #Knative #Quarkus #Kafka
#Cloudnative #Container

https://red.ht/OpenDevHour

https://red.ht/OpenDevHour

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning

support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

Thank you

32

