
What's new with
GitOps and OpenShift

1

Jonas Janz
AppDev Solutions Architect

https://github.com/pixeljonas

2

GitOps is when the infrastructure and/or application state is fully
represented by the contents of a git repository. Any changes to the git
repository are reflected in the corresponding state of the associated

infrastructure and applications through automation.

GitOps is a natural evolution of Agile and DevOps methodologies

What is GitOps?

3

Why GitOps?

It takes weeks
(or months!) to

provision an
environment

The application
behaves different
in production than

it did in test

Environments are
all manually
configured

(“pets vs. cattle”)
Production

deployments
have a very low

success rate

I have no visibility
or record of

configuration
changes in

environments

I can’t easily
rollback changes

to a specific
version

I can’t audit
configuration

changes

4

● All changes are auditable

● Standard roll-forward or backwards in the event of failure

● Disaster recovery is “reapply the current state of the manifests”

● Experience is “pushes and pull-requests”

GitOps Benefits

5

GitOps is for Everyone

Developers Operations

Kubernetes Cluster

Node

1

Kubernetes (K8s) is an
open-source system for
automating deployment,
scaling, and management of
containerized applications.

TLDR; It is a resource
scheduler

KUBERNETES 101

6

Node Node

Node Node Node

Node Node Node

1

1

2

2

2

2

3

33

4

4

Applications

OpenShift 4 - A Smarter Kubernetes Platform

Automated, full-stack installation from the
container host to application services

Seamless Kubernetes deployment to any
cloud or on-premises environment

Autoscaling of cloud resources

One-click updates for platform, services,
and applications

OpenShift and GitOps - A Perfect Match

● OpenShift is a declarative environment
○ Cluster configuration is declared and Operators

make it happen
○ Application deployments are declared and

Kubernetes scheduler makes it happen

● GitOps in traditional environments requires
automation/scripting, declarative environment
minimizes or eliminates this need

● Declarations are yaml files which are easily stored and
managed in git

OpenShift GitOps Principles

● Separate application source code (Java/.Net/etc) from manifests
(yaml)

● Deployment manifests are standard k8s manifests
● Avoid duplication of yaml across environments
● Manifests should be applied with standard Openshift and k8s tooling

Day 2 operations : All changes triggered from Git

Tools of the Trade

https://argoproj.github.io/argo-cd
https://kustomize.io/

Argo CD Kustomize

https://argoproj.github.io/argo-cd
https://kustomize.io/

Argo CD - What is It?

Argo CD is a declarative, GitOps continuous
delivery tool for Kubernetes.

● Easily deploy applications in a
declarative way

● Synchronizes cluster state with git
repos

● Works with a variety of Kubernetes
deployment tools including:

○ Helm
○ Kustomize
○ Ksonnet/Jsonnet
○ Directories of yaml

● It is not a CI tool

What is an Argo CD Application?

apiVersion: argoproj.io/v1alpha1
kind: Application
metadata:
 name: product-catalog-dev
 namespace: argocd
spec:
 destination:
 namespace: argocd
 server: https://kubernetes.default.svc
 project: product-catalog
 source:
 path: manifests/app/overlays/dev-quay
 repoURL: https://github.com/gnunn-gitops/product-catalog.git
 targetRevision: master
 syncPolicy:
 automated:
 prune: false
 selfHeal: false

● Argo CD Application is a Custom
Resource (CR) that defines the app
in a declarative manner

● Application definition includes:
○ Name
○ Cluster
○ Git repository
○ Synchronization Policy

● Applications can be deployed from
Argo CD GUI or CLI (argocd or
kubectl or oc)

Argo CD - Synchronizing

Poll/Push

Change in git Pushed to Argo CD Check
Sync Status

Synchronize

Argo CD - Challenges
It’s not all rainbows and unicorns

● Repo structure for manifests:
○ Monorepo; or
○ Separate repos for base/environments

● Managing secrets

● Order dependent deployments

● Non-declarative requirements

● Integrating with CI/CD tools (Jenkins, OpenShift
Pipelines, etc)
○ Does CI/CD or Argo CD manage deployments?

Approach 1: Multiple repositories
/taxi-config-stage.git /taxi-config-test.git

/taxi-config-prod.git /taxi-config-dev.git

/taxi.git

Approach 2 : Single Repository
├── apps
│ └── app-1
│ ├── base
│ │ └── kustomization.yaml
│ └── dev
│ ├── deployment.yaml
│ └── kustomization.yaml
├── envs
│ ├── base
│ │ ├── 205-serviceaccount.yaml
│ │ └── kustomization.yaml
│ └── dev
│ └── kustomization.yaml
└── services
 └── service-a
 ├── base
 │ ├── config
 │ │ ├── 300-deployment.yaml
 │ │ ├── 310-service.yaml
 │ │ └── kustomization.yaml
 │ └── kustomization.yaml
 └── dev
 ├── dev-deployment.yaml
 ├── dev-service.yaml
 └── kustomization.yaml

├── base
│ ├── deployment.yaml
│ ├── kustomization.yaml
│ └── service.yaml
└── overlays
 ├── development
 │ ├── kustomization.yaml
 │ └── replicas.yaml
 ├── production
 │ ├── kustomization.yaml
 │ ├── replicas.yaml
 │ └── volumes.yaml
 └── staging
 ├── kustomization.yaml
 └── volumes.yaml

├── 00-tekton
│ ├── release.notags.yaml
│ └── release.yaml
├── 01-namespaces
│ ├── cicd-environment.yaml
│ ├── dev-environment.yaml
│ └── stage-environment.yaml
├── 02-serviceaccount
│ ├── demo-sa-admin-dev.rolebinding.yaml
│ ├── demo-sa-admin-stage.rolebinding.yaml
│ ├── role-binding.yaml
│ ├── role.yaml
│ └── serviceaccount.yaml
├── 03-tasks
│ ├── buildah-task.yaml
│ ├── create-github-status-task.yaml
│ ├── deploy-from-source-task.yaml
│ └── deploy-using-kubectl-task.yaml
├── 04-templatesandbindings
│ ├── dev-cd-deploy-from-master-binding.yaml
│ ├── dev-cd-deploy-from-master-template.yaml
│ ├── dev-ci-build-from-pr-binding.yaml
│ ├── dev-ci-build-from-pr-template.yaml
│ ├── stage-cd-deploy-from-push-binding.yaml
│ ├── stage-cd-deploy-from-push-template.yaml
│ ├── stage-ci-dryrun-from-pr-binding.yaml
│ └── stage-ci-dryrun-from-pr-template.yaml
├── 05-ci
│ ├── dev-ci-pipeline.yaml
│ └── stage-ci-pipeline.yaml
├── 06-cd
│ ├── dev-cd-pipeline.yaml
│ └── stage-cd-pipeline.yaml
├── 07-eventlisteners
│ └── cicd-event-listener.yaml
└── 08-routes
 └── github-webhook-event-listener.yaml

Argo CD - Managing Secrets

How do I store Kubernetes secrets securely in git when a
secret is not encrypted and is only base64?

● Externalize the secret using products like Vault

● Encrypt the secret in git:
○ Bitnami Sealed Secrets
○ Mozilla SOPs/KSOPs
○ Many others

Argo CD - Order Dependent Deployments

https://argoproj.github.io/argo-cd/user-guide/sync-waves/

● Sometimes you have cases where you need to deploy things in a
specific order

○ Subscribe Operator before deploying instance
○ Create namespace/project before deploying application into it
○ Deploy required infrastructure before application (try to avoid

this)

● Tools like kustomize and helm will handle this automatically in some
cases

● Argo CD provides Sync Phases and Waves to address other use cases
○ Three sync phases - Pre-sync, sync, post-sync
○ Within each phase can have multiple waves, next wave does not

proceed until previous phase is healthy

Argo CD - Non-declarative Requirements

● There can be instances where you need to deploy something which
cannot fully be done in a declarative way, i.e. must be scripted

● Try to minimize this and leverage kubernetes primitives where possible:
○ Init containers
○ Jobs
○ Operators

● Argo CD Resource Hooks
○ Hooks are ways to run scripts before, during, and after a Sync

operation
○ Hooks can be run: PreSync, Sync, PostSync and SyncFail

Argo CD - Integrating with CI/CD Tools

The name isn’t Argo CI/CD!

 CI/CD tools like Jenkins, OpenShift Pipelines still required to manage SDLC

ArgoCD Managed Deployment Pipeline Managed Deployment

Pro Consistent Post-Test update of image reference

Con Image reference updated in git
before integration tests, manage
rollback?

Inconsistent

Con Pipeline tools must be able to wait
for sync

Application repo

Environment repo

Openshift
Pipeline

Updates image
in dev manifest

Push newly built
container image

Apply the
newly updated
manifests

Infrastructure repo

Application
Developer

Infrastructure
Admin

Merge PR to “master”

1

2 3

4

5

Push change and open
PR

Merge PR to “dev”
repo

Argo CD - Avoiding Duplication

Argo CD enables deployment across multiple clusters, awesome!

Wait, how do we manage configuration without copying and pasting yaml
everywhere?

Kustomize - What is it?

Kustomize lets you customize raw, template-free YAML files for multiple purposes,
leaving the original YAML untouched and usable as is.

● Kustomize is a patching framework

● Enables environment specific changes to be introduced without duplicating yaml
unnecessarily

● Unlike templating frameworks, all yaml can be directly applied

● Kustomize is included in kubectl and oc starting in 1.14

oc apply -k apps/myapp/overlays/dev

Kustomize - Organization

https://kubernetes.io/docs/tasks/manage-kubernetes-objects/kustomization/#bases-and-overlays

Kustomize is organized in a hierarchical directory structure of bases and
overlays.

● A base is a directory with a kustomization.yaml file that contains a set of
resources and associated customization.

○ A base has no knowledge of an overlay and can be used in multiple
overlays.

● An overlay is a directory with a kustomization.yaml file that refers to other
kustomization directories as its bases

○ An overlay may have multiple bases and it composes all resources
from bases and may also have customization on top of them.

Using Kustomize

└── apps
 └── myapp
 ├── base
 │ ├── kustomization.yaml
 │ ├── service.yaml
 │ ├── route.yaml
 │ └── deployment.yaml
 │
 └── overlays
 ├── dev
 │ ├── patch-route.yaml
 │ ├── namespace.yaml
 │ └── kustomization.yaml
 └── test
 ├── patch-route.yaml
 ├── namespace.yaml
 └── kustomization.yaml

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization

resources:
- service.yaml
- route.yaml
- deployment.yaml

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization

Namespace: dev
bases:
- ../../base
resources:
- namespace.yaml
patchesStrategicMerge:
- patch-route.yaml

Why Kustomize?

● Eliminates needless duplication of yaml

● Enables reuse through customization (patching)

● Hierarchical structure provides flexibility
○ Overlays can leverage other bases and overlays
○ Overlays can reference remote repositories

● Included with kubernetes since 1.14

● Validates yaml before deployment

Kustomize vs Helm vs OpenShift Templates

Patching framework

Ability to apply yaml directly

Some use-cases may work
better with templates

No support in OpenShift GUI
console

Great for enterprise teams, not
as good for independent
applications

Kubernetes focused package
manager based on templates

Templates enable prescribed
customization, more difficult
to customize outside those
boundaries

First class support in
OpenShift GUI console

Great for distributing
applications across multiple
organizations

OpenShift specific templating
solution

Easy to understand and use

First class support in
OpenShift GUI console

Templates are static, no
support for dynamic
scripting/variables

What's next in OpenShift Q3CY2020Cloud Native Development

OPENSHIFT PIPELINES

Near Term
(3-6 months)

Mid Term
(6-9 months)

Long Term
(9+ months)

EC
O

SY
ST

EM
U

X
`

C
O

R
E

U
X

● Unprivileged pipelines
● Auto-pruning pipeline runs and task runs
● Pipeline admin metrics in Prometheus
● In-cluster Tekton catalog and hub
● Jenkins migration guide
● Deployment pattern custom tasks

● OpenShift Pipelines GA
● Disconnected clusters (air-gapped)
● Proxy support
● Pipeline as code
● Unprivileged pipelines
● Pipeline logs in OpenShift logging stack

● Enhance pipeline builder in Console
● Expose Pipeline Dev metrics in Console
● Add Advanced pipeline templates in Console
● IntelliJ integration with Tekton Hub
● IntelliJ gains Pipeline diagram

● Additional official Tekton catalogs
● App Services (MW) Tasks
● Community-contributions
● OCI artifacts for task distribution
● Additional Tekton resource types in Hub

C
O

R
E

● Console pages for all Tekton resources
● Console displays additional pipeline metadata
● Console contains Pipelines guided tour
● Start pipeline wizard in VS Code
● Enhanced validation in VS Code
● Tekton Hub integration in VS Code
● CLI integration for Tekton Hub
● Tekton extension for CodeReady Workspaces

`
EC

O
SY

ST
EM ● Tekton Hub launch

● Tekton community catalog in Hub
● Multi-catalog support in Hub
● Additional Tekton tasks
● Improved S2I Tekton Tasks

U
X

● Pipeline pause and resume
● Partial pipeline execution
● Notifications
● Git provider PR status integration
● Argo CD integrations

C
O

R
E

● Expose Pipeline Admin metrics in Console
● Enhanced pipeline visualization in Console
● Console integration with Tekton Hub

`
EC

O
SY

ST
EM

● ISV Tasks in Catalog
● OCI Tekton artifact support in OpenShift
● Quality indicators in Tekton Hub

Product Manager: Siamak Sadeghianfar

29

https://hub-preview.tekton.dev

Argo CD on OpenShift

Product Manager: Siamak Sadeghianfar

● Declarative GitOps operator for continuous
delivery on Kubernetes

● Git as the single source of truth in sync with
Kubernetes clusters with drift detection

● Red Hat joins Argo steering committee
together with Intuit, BlackRock and Alibaba
(announcement at KubeCon EU)

● Tekton and Argo CD as the basis of developer
GitOps workflow

30

Dedicated GitOps View

Empower developers with visibility of
their application across all environments

DEVELOPING ON Kubernetes

● Dedicated GitOps view
● View all app groupings
● Drill into app grouping details to

get visibility into the
composition and status of the
applications/workloads deployed
across environments

● Link out to Argo CD
● Eventually powered by Argo CD

31

32

Near Term
(3-6 months)

Mid Term
(6-9 months)

Long Term
(9+ months)

CO
N

SO
LE

B
O

O
T

ST
R

A
P

A
rg

o
C

D

CO
N

SO
LE

B
O

O
T

ST
R

A
P

`
A

rg
o

C
D

CO
N

SO
LE

B
O

O
T

ST
R

A
P

A
rg

o
C

D

● Argo CD GA
● Argo CD Auth integration with OpenShift
● Application sets
● Argo CD and Tekton integrations

● Dashboard for multi-cluster deployment
environments

● GitOps-based project bootstrapping with
Tekton, Argo CD, kustomize

● Dev Preview of bootstrapping with odo

● Argo CD Tech Preview in OperatorHub

● Helm support
● Gitlab support
● Application promotion between environments
● Tech preview of bootstrapping with odo

● Argo CD integration

● ACM Collaborations

● GA of bootstrapping with odo
● Bootstrapping MW apps
● Bootstrapping based on devfile

Argo CD and Developer GitOps Workflow

Resources

● Canada Solution Architects GitOps Repo:
○ https://github.com/redhat-canada-gitops

● GitOps Repos from Red Hatters
○ https://github.com/gnunn-gitops
○ https://github.com/pittar-gitops
○ https://github.com/PixelJonas/cluster-gitops

● OpenShift and ArgoCD Introduction Video
○ https://www.youtube.com/watch?v=xYCX2EejSMc

● Free Online OpenShift Learning
○ https://learn.openshift.com/introduction/

■ Introduction to GitOps with OpenShift
■ Multi-cluster GitOps with OpenShift

https://github.com/redhat-canada-gitops
https://github.com/gnunn-gitops
https://github.com/pittar-gitops
https://github.com/PixelJonas/cluster-gitops
https://www.youtube.com/watch?v=xYCX2EejSMc
https://learn.openshift.com/introduction/

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Questions?

34

