

A Microservice
Story

Architectural transition with ease powered by
Quarkus and OpenShift

Nice to meet you

Raffael Hertle
Senior Software Engineer

hertle@puzzle.ch
@g1raffi

mailto:hertle@puzzle.ch

One Team

09.02.2021

Agenda
• Story time: The great refactoring
• Microservices in general
• Technological changes and experiences

Mentimeter

09.02.2021

Story time

Base scenario

• Energy law reform

• Build self-consumption communities (SCC)

• Households could trade energy

• Tons of paperwork

Base scenario

• Use case found

• Smart billing and management of SCC

• Read meter data, store, bill – easy

Base scenario

• Innovation project started

• Blockchain technology

• IoT approach

• Technical buzzwords

Prototype

• Built prototype

• Monolithic approach

• Spring boot back end, Angular front end

• Containerized on OpenShift

Prototype

• Built prototype

• Monolithic approach

• Spring boot backend, Angular frontend

• Containerized on OpenShift

Prototype

• Customers happy

• Reliable, stable system

• Switch to real product – but how?

Prototype

• Discussions about migration path

• Application was already there

• Prototype => Prod-o-type

• Reuse codebase

Product

• Userbase and reading sources multiply

• Codebase and feature landscape grew

• In transition refactoring to smaller domains

• Microservice like architecture

Micro-monoliths

• 4 smaller domains

Micro-monoliths

• 4 smaller domains

• REST calls

Micro-monoliths

• 4 smaller domains

• REST calls

• Shared database

Micro-monoliths

• 4 smaller domains

• REST calls

• Shared database

• Startup times

Micro-monoliths

• 4 smaller domains

• REST calls

• Shared database

• Startup times

• System stable

Micro-monoliths

• Happy customers

• More meters

• Blocking operations

• Bottlenecks

Refactoring #2

• Get smaller, more reactive

• True microservices

• Loosen coupling

• Create robustness

Discovery of Quarkus

• In parallel project Quarkus came up

• Promising technology

• Fast startup times, low memory footprint

• Standards

Discovery of Quarkus

Discovery of Quarkus

Discovery of Quarkus

• Personal PoC

• Microservices with Quarkus

• Messaging instead of REST

• Independent services, stateless

Discovery of Quarkus

• PoC successful

• Transition to true microservices

• Parallel development

• Transition with Strangler approach

Refactoring with Quarkus

• True microservices

• Landscape from 4 to 14 microservices

• Non-blocking workflows with messaging

• More robust, more reliable, more cloud-native

Infrastructure with OpenShift

• 14 services, 14+ infrastructure elements

• Infrastructure as code

• Fast set-up of new environments

• Self-healing system

Infrastructure with OpenShift

• Transparent landscape

• Points of failure fast identified

• Observability

Infrastructure with OpenShift

Recap

• Transition to microservices

• Requirements awareness

• Fail fast

• Adapt to situation

09.02.2021

Microservices
• What are microservices
• Why and when to use them
• Advantages / Disadvantages
• Approach to migrate

09.02.2021

Monolithic Architecture

09.02.2021

Monolithic Architecture

• Single code-base
• Single unit deployable
• Independent from other applications
• All domains or business processes in one application

09.02.2021

Microservices Architecture

09.02.2021

Microservices Architecture

• Small autonomous applications
• Independent life cycles
• Microservice for single responsibility / domain
• Loosely coupled
• Code base per domain / business process

09.02.2021

Microservices Architecture

• When to choose which architecture?

New Application

Advantages of monoliths

Simple architecture

• Everything is local

• High productivity

• Limited attack vectors

• Easy testing

• Performance matches requirements

Advantages of monoliths

Team

• Dedicated team

• Independent releasing

• Features can be released fast

• No dependencies to other teams

• Devs have strong application knowledge

But then...

• Application is a big success

• Users increase

• Traffic increases dramatically

• New features

• Dev team grows

Application and complexity grows

Image source: linkedin.com

Disadvantages of monoliths

Complex architecture

• Architectural changes are difficult

• Impact of code change are hard to estimate

• Keeping up code quality needs extra effort

• Newer technologies are hard to pickup

Disadvantages of monoliths (cont.)

Team

• Teams need to be coordinated

• Code changes may collide

• Release planning required

• Feature freeze and test cycles

• Devs have limited knowledge

• Productivity drops

Ok, now what?

Advantages of microservices

Architecture

• Independent modules

• Defined boundaries (APIs, Events)

• Loosely coupled (if done right)

• Polyglot (what best fits the task)

Advantages of microservices

Team

• Teams work independently

• Need to agree to defined boundaries

• Independent within their microservice

• Easier onboarding due limited scope

Advantages of microservices

Deployment and Runtime

• Deploy independently

• Easier scaling of single components

• Bugs may be local only

But ...

Image source: turnoff.us

Disadvantages of microservices

Architecture

• Everything is local does not hold anymore

• Data is distributed, no foreign keys across boundaries

• Keeping data consistent needs extra effort

• Communication and error handling needs extra effort

• Changing the agreed boundaries may be hard

Disadvantages of microservices (cont.)

Deployment and Runtime

• Harder troubleshooting with multiple instances

• Root cause detection can be hard

• More attack vectors

Short Recap

Microservices

• Lead to modularity

• Developers are enforced to respect boundaries

• Enable teams to work and release independently

• Can be replaced as long as boundary is untouched

But they introduce technical complexity

09.02.2021

Microservices Architecture

• How to migrate from monolithic appilcation?

Strangler pattern

Strangler pattern

09.02.2021

Technological changes
• Quarkus’ and resource greed
• Asynchronous is the way to go
• Dynamic infrastructure
• Automate all the things

Quarkus’ and resource greed

Quarkus’ and resource greed

• Quarkus made us think smaller

• Thinking smaller brought awareness

• Awareness became literal resource greed

Asynchronous communication

• Synchronous – Telegraph
• Asynchronous - Email

Asynchronous communication

• Reduced the coupling
• Increased system robustness
• Buffer for incoming floods

Dynamic infrastructure

• Infrastructure as Code (IaC)
• Fast provisioning
• Enhances Dev know-how
• Simplifies communication internally

Automate

• Engineers should be lazy
• Automate manual tasks
• Build, test, deploy
• Set up infrastructure

Thanks for listening

Raffael Hertle
Senior Software Engineer

hertle@puzzle.ch
@g1raffi

mailto:hertle@puzzle.ch

Thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

