
  

A Microservice 
Story

Architectural transition with ease powered by 
Quarkus and OpenShift



  

Nice to meet you

Raffael Hertle
Senior Software Engineer

hertle@puzzle.ch
@g1raffi

mailto:hertle@puzzle.ch


  

One Team



  

09.02.2021

Agenda
• Story time: The great refactoring
• Microservices in general
• Technological changes and experiences
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Story time



  

Base scenario

• Energy law reform

• Build self-consumption communities (SCC)

• Households could trade energy

• Tons of paperwork



  

Base scenario

• Use case found

• Smart billing and management of SCC

• Read meter data, store, bill – easy



  

Base scenario

• Innovation project started

• Blockchain technology

• IoT approach

• Technical buzzwords



  

Prototype

• Built prototype 

• Monolithic approach

• Spring boot back end, Angular front end

• Containerized on OpenShift



  

Prototype

• Built prototype 

• Monolithic approach

• Spring boot backend, Angular frontend

• Containerized on OpenShift



  

Prototype

• Customers happy

• Reliable, stable system

• Switch to real product – but how?



  

Prototype

• Discussions about migration path

• Application was already there

• Prototype => Prod-o-type

• Reuse codebase 



  

Product

• Userbase and reading sources multiply

• Codebase and feature landscape grew

• In transition refactoring to smaller domains

• Microservice like architecture



  

Micro-monoliths

• 4 smaller domains
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Micro-monoliths

• 4 smaller domains

• REST calls

• Shared database

• Startup times



  

Micro-monoliths

• 4 smaller domains

• REST calls

• Shared database

• Startup times

• System stable



  

Micro-monoliths

• Happy customers

• More meters

• Blocking operations

• Bottlenecks



  

Refactoring #2

• Get smaller, more reactive

• True microservices

• Loosen coupling

• Create robustness



  

Discovery of Quarkus

• In parallel project Quarkus came up

• Promising technology

• Fast startup times, low memory footprint

• Standards



  

Discovery of Quarkus



  

Discovery of Quarkus



  

Discovery of Quarkus

• Personal PoC

• Microservices with Quarkus

• Messaging instead of REST

• Independent services, stateless



  

Discovery of Quarkus

• PoC successful

• Transition to true microservices

• Parallel development

• Transition with Strangler approach



  

Refactoring with Quarkus

• True microservices

• Landscape from 4 to 14 microservices

• Non-blocking workflows with messaging

• More robust, more reliable, more cloud-native



  

Infrastructure with OpenShift

• 14 services, 14+ infrastructure elements

• Infrastructure as code

• Fast set-up of new environments

• Self-healing system



  

Infrastructure with OpenShift

• Transparent landscape

• Points of failure fast identified

• Observability



  

Infrastructure with OpenShift



  

Recap

• Transition to microservices

• Requirements awareness

• Fail fast

• Adapt to situation
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Microservices
• What are microservices
• Why and when to use them
• Advantages / Disadvantages
• Approach to migrate
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Monolithic Architecture
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Monolithic Architecture

• Single code-base
• Single unit deployable
• Independent from other applications
• All domains or business processes in one application
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Microservices Architecture

• Small autonomous applications
• Independent life cycles
• Microservice for single responsibility / domain
• Loosely coupled
• Code base per domain / business process
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Microservices Architecture

• When to choose which architecture?



  

New Application



  

Advantages of monoliths

Simple architecture

• Everything is local

• High productivity

• Limited attack vectors

• Easy testing

• Performance matches requirements



  

Advantages of monoliths

Team

• Dedicated team

• Independent releasing

• Features can be released fast

• No dependencies to other teams

• Devs have strong application knowledge



  

But then...

• Application is a big success

• Users increase

• Traffic increases dramatically

• New features

• Dev team grows



  

Application and complexity grows

Image source: linkedin.com



  

Disadvantages of monoliths

Complex architecture

• Architectural changes are difficult

• Impact of code change are hard to estimate

• Keeping up code quality needs extra effort

• Newer technologies are hard to pickup



  

Disadvantages of monoliths (cont.)

Team

• Teams need to be coordinated

• Code changes may collide

• Release planning required

• Feature freeze and test cycles

• Devs have limited knowledge

• Productivity drops



  

Ok, now what?



  

Advantages of microservices

Architecture

• Independent modules

• Defined boundaries (APIs, Events)

• Loosely coupled (if done right)

• Polyglot (what best fits the task)



  

Advantages of microservices

Team

• Teams work independently

• Need to agree to defined boundaries

• Independent within their microservice

• Easier onboarding due limited scope



  

Advantages of microservices

Deployment and Runtime

• Deploy independently

• Easier scaling of single components

• Bugs may be local only



  

But ...

Image source: turnoff.us



  

Disadvantages of microservices

Architecture

• Everything is local does not hold anymore

• Data is distributed, no foreign keys across boundaries

• Keeping data consistent needs extra effort

• Communication and error handling needs extra effort

• Changing the agreed boundaries may be hard



  

Disadvantages of microservices (cont.)

Deployment and Runtime

• Harder troubleshooting with multiple instances

• Root cause detection can be hard

• More attack vectors



  

Short Recap

Microservices 

• Lead to modularity

• Developers are enforced to respect boundaries

• Enable teams to work and release independently

• Can be replaced as long as boundary is untouched

But they introduce technical complexity
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Microservices Architecture

• How to migrate from monolithic appilcation?



  

Strangler pattern



  

Strangler pattern
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Technological changes
• Quarkus’ and resource greed
• Asynchronous is the way to go
• Dynamic infrastructure
• Automate all the things
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Quarkus’ and resource greed

• Quarkus made us think smaller

• Thinking smaller brought awareness

• Awareness became literal resource greed



  

Asynchronous communication

• Synchronous – Telegraph
• Asynchronous - Email



  

Asynchronous communication

• Reduced the coupling
• Increased system robustness
• Buffer for incoming floods



  

Dynamic infrastructure

• Infrastructure as Code (IaC)
• Fast provisioning
• Enhances Dev know-how
• Simplifies communication internally



  

Automate

• Engineers should be lazy
• Automate manual tasks
• Build, test, deploy
• Set up infrastructure
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