
IT-Power Services GmbH

From Docker to OpenShift
What we have learned while deploying our first 
application

Clemens Zauchner

1



Contents

• What did we deploy?
• How does the deployment look like using Docker Compose / Swarm?
• How did we move from Docker to OpenShift?
• What were the main challenges and how did we deal with them?

What you can expect from this talk

2



Operations

Data 
Science

DevOps 
MLOps

IT-Power Services
Bridging the gap between operations and applications

3

• Operations experts
• Power-house with high expertise 

IBM i and Linux systems
• Private cloud provider with 

multiple data centres in Austria
• Services around public cloud

• Data Science and Software 
Engineering

• DevOps / MLOps
• CI/CD pipelines
• Docker, Podman, OpenShift



Background

4



Background: manage an online event

• Manage invitations and 
participants
• Including email templates

• Create a virtual "stage"
• Show video and Q&A side by side

IT-PS Data Science Talk 2021

5



Demo: online event application

• The landing page lists past, current and upcoming events

Landing page

6



Demo: online event application
Registration form

7



Demo: online event application

• Django offers an admin page
• Manage event details
• Manage registrations
• Send mails

Django admin area

8



Demo: online event application

• HTML email templates
• Customisation via admin page
• Distribution via admin page

• Unsubscribe action via 
embedded link

Mailer: create and send emails

9



Demo: online event application

• The "watch page" is available for 
registered users only

• Embeds 
• YouTube / Vimeo iframe
• Slido Q&A

Watch page

10



Tech stack: high level overview

• Django
• Python based web framework
• Model-template-view pattern

• PosgreSQL DB
• Stores all relevant information for event
• Managed by Django

• Nginx
• Webserver

• UWSGI
• Web Server Gateway Interface
• Link between webserver and python

Django application with PosgreSQL database behind Nginx

11



Containerisation and Orchestration

• 4 Services
• Application init
• Postgres
• Eventman (Python Django 

Application)
• Nginx

• 1 Network
• Some services expose ports on 

the host

• Some services read / write data 
on disk

Docker Compose / Swarm

12



The deployment in OpenShift

• 3 deployments
• Init deployment

• Should have been a pod
• See details later

• NGINX exposes service via 
route

Topology view from OpenShift

13



Moving from Docker to OpenShift

14



Kompose

• Kompose is a tool to help users 
who are familiar with docker-
compose move to Kubernetes
• OpenShift can be selected as 

provider

• Provides a great starting point 
to generate yml for 
all components

Moving from yml to yml

Basic usage:

15



Single service example

• All code samples can be found 
in our GitHub

• https://github.com/it-power-
services/docker-to-openshift

Code samples

16

https://github.com/it-power-services/docker-to-openshift


Single service example

• Docker Compose includes 
instructions to
• Create a service called "web"
• Image is built from "app" context
• Exposes port 5000

• The Flask API exposes one 
Endpoint that returns the string 
"Hello World!"

Python Flask API

17



Single service example

• Kompose translates that to
• Build config
• Imagestream
• Deployment config
• Service

• If you want to expose the 
service outside the cluster this 
has to be configured manually 
by creating a route

• The application can be deployed 
using oc apply

Python Flask API

18



Single service example

• The topology of the application 
is very simple

• The example returns the 
expected "Hello World!" string

Python Flask API

19



Disadvantages of using Kompose

• K8s or minikube required
• Translation is tricky, especially 

when concepts don't map 1:1
• Kubernetes not opinionated, 

many ways to do one thing

• Docker Compose files have to 
be very explicit
• e.g. restart policy determines type

• The way image streams are 
created leads to unresolved 
images

20



Using the OpenShift GUI

• Many options
• Deploy an image from a registry
• Import repo, build and deploy
• …

A very good starting point

21



Using the OpenShift GUI

• Select the repo url
• Specify the build context

• Select a build image

Import from Git

22



Using the OpenShift GUI

• Provide names for the 
application

• Choose deployment of 
deployment config

• Optionally create route to 
service

Import from Git

23



Using the OpenShift GUI

• Results are similar
• But: service and route needed 

to be configured to change the 
port from 8080 to 5000

Resulting topology

24



Using the OpenShift GUI

Advantages
• Easier to get familiar with 

concepts
• Easier to get overview of where 

things go wrong

• Many obstacles more ironed out
• e.g. insecure registries

Advantages and disadvantages

25

Disadvantages
• Hard to reproduce



Challenges and possible solutions

26



Challenges in the process

• In Docker: Services and containers (tasks)
• In OpenShift more concepts and they don't map 1:1 to Docker concepts
• Getting the head around not straight forward

• Tools like kompose or the OpenShift GUI can help to get familiar with 
them

New concepts in Kubernetes

27



Challenges in the process

• Images in OpenShift are built 
using Buildah

• Not all Dockerfiles can be built

• Podman build can help to debug 
the build process locally

Image build using Buildah

28



Challenges in the process

• In Docker, usually everything is run as root
• In entrypoints of DB containers, often there is a chown of the data 

directory
• The OpenShift user will not have permissions to do so
• Solution: with PostgreSQL, specify env variable PGDATA to not point 

to/var/lib/postgresql/data

• Using official OpenShift images is the better option

File permissions

29



Challenges in the process

• Ports below 1024 are privileged ports
• Many Docker images (e.g. wordpress, apache, nginx) use port 80 by 

default
• Since the container is running with the OpenShift user, this will lead to 

a permission denied error

• Adapting the image / config is necessary to run them

• Using official OpenShift images is the better option

Exposing port(s) in container

30



Challenges in the process

• 3 ways of serving a certificate to clients
• Re-encrypt: ingress serves certificate and re-encrypts traffic to pod
• Edge: ingress serves certificate but does not re-encrypt
• Passthrough: traffic is passed to pod which handles certificates

• Our NGINX deployment handles letsencrypt certificates automatically
• Requirement: make /admin page accessible only via VPN

• Problem: x-forwarded-for headers do not get passed on to nodes, 
nginx sees IP of ingress controller

• Workaround: edge termination without automatic certificate renewal

TLS termination and SSL certificates

31



Challenges in the process

• My question on stackoverflow is 
still not fully answered

• https://stackoverflow.com/que
stions/66473285/x-forwarded-
for-headers-lost-when-
changing-openshift-route-
from-http-to-https

TLS termination and SSL certificates

32

https://stackoverflow.com/questions/66473285/x-forwarded-for-headers-lost-when-changing-openshift-route-from-http-to-https


Summary

• Getting started can feel 
overwhelming

• There are tools that make the 
transition easier

• Using the GUI first and trying 
the same at the CLI 
afterwards is a good way to 
learn

• Creating a minimal, 
reproducible example helps
to iron out bugs

33 Ph
ot

o 
by

Va
le

nt
ín

 B
et

an
cu

r f
ro

m
 U

ns
pl

as
h

https://stackoverflow.com/help/minimal-reproducible-example


IT-Power Services GmbH
Modecenterstraße 14, 1030 Wien

www.it-ps.at

Clemens Zauchner
Senior Data Scientist

+43 660 92 77 981
clemens.zauchner@it-ps.at

34


