
Distributed Tracing with OpenShift



What is OpenTelemetry?

OpenTelemetry (or "Otel") is an open-source observability framework
for instrumenting, generating, collecting, and exporting telemetry data.

It's a collection of tools, APIs, and SDKs that helps you understand the 
performance and behavior of your software.

Think of it as the "plumbing" that standardizes how you get data out 
of your applications.

Introduction to 
OpenTelemetry



Traces: Represent the end-to-end flow of a request through a 
distributed system. They show the path of a transaction across 
multiple services. Essential for distributed tracing and performance 
analysis.

Metrics: A collection of aggregated measurements that represent 
a service's state over a period of time. Think of things like CPU 
usage, request rates, or memory consumption.

Logs: Timestamped text records of events that happen within an 
application. They are crucial for debugging and understanding 
specific events.

The Three Pillars of Observability



Instrumentation: This is the process of generating telemetry data from your 
code. OpenTelemetry provides SDKs for multiple programming languages 
(Java, Python, Go, etc.) to automatically or manually instrument your 
application.

OpenTelemetry Collector: A vendor-agnostic intermediary that receives, 
processes, and exports telemetry data. It can be deployed as a single agent 
per host or as a gateway for multiple services.

Backend Analysis: The Collector exports the data to a backend, such as 
Prometheus, Tempo, or a commercial observability platform. This is where you 
can visualize, analyze, and query your data.

How It Works: 
The OpenTelemetry Architecture



Vendor Neutrality: Avoids vendor lock-in by providing a 
standardized way to collect telemetry data. You can switch 
your backend without changing your application code.

Consistency: Ensures all teams across an organization are 
using the same format for observability data.

Rich Ecosystem: Supported by a large, active community 
and integrated with numerous tools and platforms.

Distributed Tracing: Provides the best-in-class solution 
for understanding complex microservice architectures.

Why Use OpenTelemetry?



Step 1: Choose Your Language: Find the OpenTelemetry 
SDK for your programming language.

Step 2: Instrument Your Code: Add the necessary libraries 
to your application. For many common frameworks, this can 
be done with automatic instrumentation.

Step 3: Deploy the Collector: Set up an OpenTelemetry 
Collector to receive data from your application.

Step 4: Choose a Backend: Configure the Collector to 
send data to your observability backend of choice.

Getting Started



linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

Questions ? 

Link public git repository:

https://github.com/michaelalang/openshift-anwendertreffen-wien-25-

09-2025

Thank you for your attention, 
and now the interesting part … 
Hands on time


	Slide 1
	Introduction to OpenTelemetry
	The Three Pillars of Observability
	How It Works: The OpenTelemetry Architecture
	Why Use OpenTelemetry?
	Getting Started
	Slide 7

